cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359433 Dirichlet inverse of A071773.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, 1, 1, -1, 2, -1, 1, 1, 1, -1, -1, -4, 1, 2, 1, -1, -1, -1, -1, 1, 1, 1, 2, -1, 1, 1, -1, -1, -1, -1, 1, 2, 1, -1, -1, -6, 4, 1, 1, -1, -2, 1, -1, 1, 1, -1, -1, -1, 1, 2, -1, 1, -1, -1, 1, 1, -1, -1, -2, -1, 1, 4, 1, 1, -1, -1, -1, 4, 1, -1, -1, 1, 1, 1, -1, -1, -2, 1, 1, 1, 1, 1, 1, -1, 6, 2, 4, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2023

Keywords

Comments

Multiplicative because A071773 is.

Crossrefs

Cf. A071773.
Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).
Cf. also A359432.

Programs

  • Mathematica
    f[p_, e_] := (-1)^e * (1-p)^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 04 2023 *)
  • PARI
    A071773(n) = { my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(f[i, 2]>1)); };
    memoA359433 = Map();
    A359433(n) = if(1==n,1,my(v); if(mapisdefined(memoA359433,n,&v), v, v = -sumdiv(n,d,if(dA071773(n/d)*A359433(d),0)); mapput(memoA359433,n,v); (v)));

Formula

Multiplicative with a(p^e) = (-1)^e * (1-p)^floor(e/2). - Sebastian Karlsson, Jan 03 2023