cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A071773 a(n) = gcd(rad(n), n/rad(n)), where rad(n) = A007947(n) is the squarefree kernel of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3, 10, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 24 2002

Keywords

Comments

n is squarefree iff a(n)=1.
Product of primes dividing n more than once. - Charles R Greathouse IV, Aug 08 2013
Squarefree kernel of the square part of n. - Peter Munn, Jun 12 2020

Crossrefs

Cf. A003415, A003557, A005117, A007947, A007948, A008833, A057521, A166486 (parity of terms), A359433 (Dirichlet inverse).
Cf. A065464.

Programs

Formula

a(n) = gcd(A007947(n), A003557(n)).
Multiplicative with p^e -> p^ceiling((e-1)/e), p prime.
a(n) = rad(n/rad(n)) = A007947(A003557(n)). - Velin Yanev, Antti Karttunen, Aug 20 2017, Nov 28 2017
a(n) = A007947(A057521(n)). - Antti Karttunen, Nov 28 2017
a(n) = A007947(A008833(n)). - Peter Munn, Jun 12 2020
a(n) = gcd(A003415(n), A007947(n)). - Antti Karttunen, Jan 02 2023
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Nov 09 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(4*s-1) - 1/p^(4*s-2)).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.428249505677094440218765707581823546121298513355936144031901379532123...
f'(1) = f(1) * Sum_{p prime} 2*(3*p-2)*log(p) / (p^3-2*p+1) = f(1) * 2.939073481649229666406787986900328729326669597518287791424059647447664...
and gamma is the Euler-Mascheroni constant A001620. (End)

A359432 Dirichlet inverse of A327936, which is multiplicative sequence with a(p^e) = p if e >= p, otherwise 1.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 1, 1, -1, -1, 0, 1, -2, 1, -1, -1, -1, -1, 1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 1, 0, 1, -1, -1, 0, 0, 1, 1, -1, 2, 1, -1, 1, 1, -1, -1, -1, 1, 0, -1, 1, -1, -1, 1, 1, -1, -1, 0, -1, 1, 0, 1, 1, -1, -1, -1, 2, 1, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, 1, 1, -1, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2023

Keywords

Comments

Multiplicative because A327936 is.

Crossrefs

Cf. A327936.
Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).
Cf. also A358216, A359433.

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[e, p], 0, (1 - p)^(e/p), 1, -(1 - p)^((e - 1)/p), , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 100}] (* Amiram Eldar, Jan 26 2023 *)
  • PARI
    A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); };
    memoA359432 = Map();
    A359432(n) = if(1==n,1,my(v); if(mapisdefined(memoA359432,n,&v), v, v = -sumdiv(n,d,if(dA327936(n/d)*A359432(d),0)); mapput(memoA359432,n,v); (v)));

Formula

Multiplicative with a(p^e) = (1 - p)^(e/p) if p | e, -(1 - p)^((e - 1)/p) if e == 1 (mod p), and 0 otherwise. - Amiram Eldar, Jan 26 2023

A366292 Dirichlet inverse of A353271, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -2, -3, -1, 1, -1, -5, -3, -1, -1, 0, -1, 9, -5, -9, -1, 11, -4, -11, -4, 13, -1, 5, -1, -1, -9, -15, -5, 6, -1, -17, -11, 5, -1, 21, -1, 21, -2, -21, -1, 5, -6, -8, -15, 25, -1, 22, -9, 7, -17, -27, -1, 3, -1, -29, 14, -1, -11, 11, -1, 33, -21, -3, -1, 16, -1, -35, -8, 37, -9, 13
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Crossrefs

Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).
Cf. also A209635, A342417, A354347, A354823, A359432, A359433, A359577 for other sequences that are equal modulo 2.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A332449(n) = A005940(1+(3*A156552(n)));
    A353271(n) = (n / gcd(n, A332449(n)));
    memoA366292 = Map();
    A366292(n) = if(1==n,1,my(v); if(mapisdefined(memoA366292,n,&v), v, v = -sumdiv(n,d,if(dA353271(n/d)*A366292(d),0)); mapput(memoA366292,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA353271(n/d) * a(d).
Showing 1-3 of 3 results.