A359452 Number of vertices in the partite set of the n-Menger sponge graph that contains the corners.
1, 8, 208, 3968, 80128, 1599488, 32002048, 639991808, 12800032768, 255999868928, 5120000524288, 102399997902848, 2048000008388608, 40959999966445568, 819200000134217728, 16383999999463129088, 327680000002147483648, 6553599999991410065408, 131072000000034359738368
Offset: 0
Examples
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 8.
Links
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge
- Wikipedia, Menger sponge
- Index entries for linear recurrences with constant coefficients, signature (16,80).
Crossrefs
Programs
-
Mathematica
A359452[n_]:=(20^n+(-4)^n)/2;Array[A359452,25,0] (* Paolo Xausa, Nov 29 2023 *)
-
PARI
a(n) = (20^n + (-4)^n)/2 \\ Andrew Howroyd, Jan 02 2023
-
Python
def A359452(n): return (10**n<
Chai Wah Wu, Feb 13 2023
Formula
a(n) = (20^n + (-4)^n)/2.
a(n) = 20^n - A359453(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: (1 - 8*x)/((1 - 20*x)*(1 + 4*x)).
E.g.f.: exp(8*x)*cosh(12*x). (End)
Comments