A359453 Number of vertices in the partite set of the n-Menger sponge graph that do not contain the corners.
0, 12, 192, 4032, 79872, 1600512, 31997952, 640008192, 12799967232, 256000131072, 5119999475712, 102400002097152, 2047999991611392, 40960000033554432, 819199999865782272, 16384000000536870912, 327679999997852516352, 6553600000008589934592, 131071999999965640261632
Offset: 0
Examples
The level 1 Menger sponge graph can be formed by subdividing every edge of a cube graph. This produces a graph with 8 corner vertices and 12 non-corner vertices, so a(1) = 12.
Links
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge
- Wikipedia, Menger sponge
- Index entries for linear recurrences with constant coefficients, signature (16,80).
Crossrefs
Programs
-
Mathematica
A359453[n_]:=(20^n-(-4)^n)/2;Array[A359453,25,0] (* Paolo Xausa, Nov 30 2023 *)
-
PARI
a(n) = (20^n - (-4)^n)/2 \\ Andrew Howroyd, Jan 02 2023
-
Python
def A359453(n): return (10**n<
Chai Wah Wu, Feb 13 2023
Formula
a(n) = (20^n - (-4)^n)/2.
a(n) = 20^n - A359452(n).
From Stefano Spezia, Jan 02 2023: (Start)
O.g.f.: 12*x/((1 - 20*x)*(1 + 4*x)).
E.g.f.: (cosh(8*x) + sinh(8*x))*sinh(12*x). (End)
Comments