cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359758 Expansion of 1/sqrt(1 - 4*x/(1-x)^5).

Original entry on oeis.org

1, 2, 16, 110, 770, 5512, 40066, 294484, 2182850, 16288430, 122198926, 920820578, 6964483628, 52840433000, 401990254180, 3065365241440, 23422905551018, 179302895759782, 1374785979255880, 10556280995419090, 81161958814162700, 624750086745027388
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^5))
    
  • PARI
    a(n)=sum(k=0, n, binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n+4*k-1,n-k).
n*a(n) = (10*n-8)*a(n-1) - (19*n-46)*a(n-2) + 20*(n-3)*a(n-3) - 15*(n-4)*a(n-4) + 6*(n-5)*a(n-5) - (n-6)*a(n-6) for n > 5.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * binomial(n+3-k,4) * a(k).

A360132 Expansion of 1/sqrt(1 - 4*x/(1-x)^6).

Original entry on oeis.org

1, 2, 18, 134, 1010, 7788, 60978, 482708, 3853338, 30964238, 250150176, 2029781310, 16530857930, 135051216620, 1106287906140, 9083459084364, 74734798117570, 615998603183550, 5085522355488150, 42045309424052250, 348067638153560040, 2884832348569699340
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^6))

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n+5*k-1,n-k).
n*a(n) = (11*n-9)*a(n-1) - (25*n-60)*a(n-2) + 35*(n-3)*a(n-3) - 35*(n-4)*a(n-4) + 21*(n-5)*a(n-5) - 7*(n-6)*a(n-6) + (n-7)*a(n-7) for n > 6.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * binomial(n+4-k,5) * a(k).

A361815 Expansion of 1/sqrt(1 - 4*x*(1-x)^2).

Original entry on oeis.org

1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 - x*y) * (x + y)).

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^2))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 2*(2*n-2)*a(n-2) + (2*n-3)*a(n-3) ) for n > 2.

A361816 Expansion of 1/sqrt(1 - 4*x*(1-x)^3).

Original entry on oeis.org

1, 2, 0, -10, -22, 12, 174, 344, -354, -3304, -5780, 9180, 65258, 99132, -226620, -1313580, -1690990, 5441340, 26681700, 28070100, -128211552, -543818824, -440381780, 2978145240, 11080939914, 6162798092, -68377892976, -225107280388, -64286124152
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^3))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(3*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 3*(2*n-2)*a(n-2) + 3*(2*n-3)*a(n-3) - (2*n-4)*a(n-4) ) for n > 3.

A361817 Expansion of 1/sqrt(1 - 4*x*(1-x)^4).

Original entry on oeis.org

1, 2, -2, -16, -10, 118, 304, -500, -3754, -2488, 30866, 83716, -135568, -1080972, -792876, 9090484, 25788118, -39325156, -335074520, -271779024, 2820643842, 8348113120, -11788972644, -107836934448, -96107852032, 900943403012, 2778574561276, -3596374190416
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^4))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) - 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.
Showing 1-5 of 5 results.