A085362
a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).
Original entry on oeis.org
1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
-
a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
-
CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
-
my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
-
def A085362_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-5*x)) ).list()
A085362_list(30) # G. C. Greubel, May 23 2020
A110170
First differences of the central Delannoy numbers (A001850).
Original entry on oeis.org
1, 2, 10, 50, 258, 1362, 7306, 39650, 217090, 1196834, 6634890, 36949266, 206549250, 1158337650, 6513914634, 36718533570, 207412854786, 1173779487810, 6653482333450, 37770112857074, 214694383882498, 1221832400430482, 6961037946938250, 39697830840765090, 226596964146630658
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Thomas Selig, Combinatorial aspects of sandpile models on wheel and fan graphs, arXiv:2202.06487 [math.CO], 2022.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
-
a110170 0 = 1
a110170 n = a128966 (2 * n) n -- Reinhard Zumkeller, Jul 20 2013
-
with(orthopoly): a:=proc(n) if n=0 then 1 else P(n,3)-P(n-1,3) fi end: seq(a(n),n=0..25);
a := n -> `if`(n=0, 1, 2*hypergeom([1 - n, -n], [1], 2)):
seq(simplify(a(n)), n=0..24); # Peter Luschny, May 22 2017
-
CoefficientList[Series[(1 - x)/Sqrt[1 - 6 * x + x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
-
x='x+O('x^66); Vec((1-x)/sqrt(1-6*x+x^2)) \\ Joerg Arndt, May 16 2013
A360132
Expansion of 1/sqrt(1 - 4*x/(1-x)^6).
Original entry on oeis.org
1, 2, 18, 134, 1010, 7788, 60978, 482708, 3853338, 30964238, 250150176, 2029781310, 16530857930, 135051216620, 1106287906140, 9083459084364, 74734798117570, 615998603183550, 5085522355488150, 42045309424052250, 348067638153560040, 2884832348569699340
Offset: 0
A361791
Expansion of 1/sqrt(1 - 4*x/(1+x)^5).
Original entry on oeis.org
1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,4]HypergeometricPFQ[{3/2,1-n,1+n/4,(5+n)/4, (6+n)/4, (7+n)/4}, {6/5,7/5,8/5,9/5,2}, 2^10/5^5]/12; Join[{1},Array[a,28]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A359489
Expansion of 1/sqrt(1 - 4*x/(1-x)^3).
Original entry on oeis.org
1, 2, 12, 68, 396, 2358, 14262, 87252, 538440, 3345434, 20899816, 131154264, 826135794, 5220372274, 33077821314, 210087769632, 1337104370320, 8525602760550, 54449281992528, 348250972411252, 2230296171922008, 14300414859019290, 91791793780179790
Offset: 0
-
CoefficientList[Series[1/Sqrt[1-(4x)/(1-x)^3],{x,0,30}],x] (* Harvey P. Dale, Aug 09 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^3))
-
a(n) = sum(k=0, n, binomial(2*k,k) * binomial(n+2*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A361815
Expansion of 1/sqrt(1 - 4*x*(1-x)^2).
Original entry on oeis.org
1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0
A361816
Expansion of 1/sqrt(1 - 4*x*(1-x)^3).
Original entry on oeis.org
1, 2, 0, -10, -22, 12, 174, 344, -354, -3304, -5780, 9180, 65258, 99132, -226620, -1313580, -1690990, 5441340, 26681700, 28070100, -128211552, -543818824, -440381780, 2978145240, 11080939914, 6162798092, -68377892976, -225107280388, -64286124152
Offset: 0
A361817
Expansion of 1/sqrt(1 - 4*x*(1-x)^4).
Original entry on oeis.org
1, 2, -2, -16, -10, 118, 304, -500, -3754, -2488, 30866, 83716, -135568, -1080972, -792876, 9090484, 25788118, -39325156, -335074520, -271779024, 2820643842, 8348113120, -11788972644, -107836934448, -96107852032, 900943403012, 2778574561276, -3596374190416
Offset: 0
Showing 1-8 of 8 results.
Comments