cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A085362 a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).

Original entry on oeis.org

1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003

Keywords

Comments

Number of bilateral Schroeder paths (i.e. lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at even (zero, positive or negative) levels. Example: a(2)=8 because we have UDUD, UUDD, UHD, UDDU and their reflections in the x-axis. First differences of A026375. - Emeric Deutsch, Jan 28 2004
From G. C. Greubel, May 22 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=1. (End)

Crossrefs

Bisection of A026392.
Essentially the same as A026387.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
    
  • Maple
    a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):
    seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
  • PARI
    my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
    
  • Sage
    def A085362_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-5*x)) ).list()
    A085362_list(30) # G. C. Greubel, May 23 2020

Formula

G.f.: sqrt((1-x)/(1-5*x)).
Sum_{i=0..n} (Sum_{j=0..i} a(j)*a(i-j)) = 5^n.
D-finite with recurrence: a(n) = (2*(3*n-2)*a(n-1)-5*(n-2)*a(n-2))/n; a(0)=1, a(1)=2. - Emeric Deutsch, Jan 28 2004
a(n) ~ 2*5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f.: G(0), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)* (2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(n-1,n-k). - Vladimir Kruchinin, May 30 2016
a(n) = 2*hypergeom([3/2, 1-n], [2], -4) for n>0. - Peter Luschny, Jan 30 2017
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A110170 First differences of the central Delannoy numbers (A001850).

Original entry on oeis.org

1, 2, 10, 50, 258, 1362, 7306, 39650, 217090, 1196834, 6634890, 36949266, 206549250, 1158337650, 6513914634, 36718533570, 207412854786, 1173779487810, 6653482333450, 37770112857074, 214694383882498, 1221832400430482, 6961037946938250, 39697830840765090, 226596964146630658
Offset: 0

Views

Author

Emeric Deutsch, Jul 14 2005

Keywords

Comments

Number of Delannoy paths of length n that do not start with a (1, 1) step (a Delannoy path of length n is a path from (0, 0) to (n, n), consisting of steps E = (1, 0), N = (0, 1) and D = (1, 1)). Example: a(1) = 2 because we have NE and EN. Column 0 of A110169 (also nonzero entries in each column of A110169).
For n > 0: a(n) = A128966(2*n,n). - Reinhard Zumkeller, Jul 20 2013

Crossrefs

Programs

  • Haskell
    a110170 0 = 1
    a110170 n = a128966 (2 * n) n  -- Reinhard Zumkeller, Jul 20 2013
  • Maple
    with(orthopoly): a:=proc(n) if n=0 then 1 else P(n,3)-P(n-1,3) fi end: seq(a(n),n=0..25);
    a := n -> `if`(n=0, 1, 2*hypergeom([1 - n, -n], [1], 2)):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, May 22 2017
  • Mathematica
    CoefficientList[Series[(1 - x)/Sqrt[1 - 6 * x + x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-x)/sqrt(1-6*x+x^2)) \\ Joerg Arndt, May 16 2013
    

Formula

G.f.: (1-z)/sqrt(1-6*z+z^2).
a(n) = P_n(3) - P_{n-1}(3) (n >= 1), where P_j is j-th Legendre polynomial.
From Paul Barry, Oct 18 2009: (Start)
G.f.: (1-x)/(1-x-2x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction);
G.f.: 1/(1-2x/((1-x)^2-x/(1-x/((1-x)^2-x/(1-x/((1-x)^2-x/(1-... (continued fraction);
a(n) = Sum_{k = 0..n} (0^(n + k) + C(n + k - 1, 2k - 1)) * C(2k, k) = 0^n + Sum_{k = 0..n} C(n + k - 1, 2k - 1) * C(2k, k). (End)
D-finite with recurrence: n*(2*n-3)*a(n) = 2*(6*n^2-12*n+5)*a(n-1) - (n-2)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 2^(-1/4)*(3+2*sqrt(2))^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 18 2012
a(n) = A277919(2n,n). - John P. McSorley, Nov 23 2016
a(n) = 2*hypergeom([1 - n, -n], [1], 2) for n>0. - Peter Luschny, May 22 2017
D-finite with recurrence: n*a(n) +(-7*n+5)*a(n-1) +(7*n-16)*a(n-2) +(-n+3)*a(n-3)=0. - R. J. Mathar, Jan 15 2020
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n^2-k^2) * a(k). - Seiichi Manyama, Mar 28 2023
G.f.: Sum_{n >= 0} binomial(2*n, n)*x^n/(1 - x)^(2*n) = 1 + 2*x + 10*x^2 + 50*x^3 + .... - Peter Bala, Apr 17 2024

A360132 Expansion of 1/sqrt(1 - 4*x/(1-x)^6).

Original entry on oeis.org

1, 2, 18, 134, 1010, 7788, 60978, 482708, 3853338, 30964238, 250150176, 2029781310, 16530857930, 135051216620, 1106287906140, 9083459084364, 74734798117570, 615998603183550, 5085522355488150, 42045309424052250, 348067638153560040, 2884832348569699340
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^6))

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n+5*k-1,n-k).
n*a(n) = (11*n-9)*a(n-1) - (25*n-60)*a(n-2) + 35*(n-3)*a(n-3) - 35*(n-4)*a(n-4) + 21*(n-5)*a(n-5) - 7*(n-6)*a(n-6) + (n-7)*a(n-7) for n > 6.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * binomial(n+4-k,5) * a(k).

A361791 Expansion of 1/sqrt(1 - 4*x/(1+x)^5).

Original entry on oeis.org

1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(-1)^(n+1)Pochhammer[n,4]HypergeometricPFQ[{3/2,1-n,1+n/4,(5+n)/4, (6+n)/4, (7+n)/4}, {6/5,7/5,8/5,9/5,2}, 2^10/5^5]/12; Join[{1},Array[a,28]] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k).
n*a(n) = -( (2*n-4)*a(n-1) + (11*n-14)*a(n-2) + 20*(n-3)*a(n-3) + 15*(n-4)*a(n-4) + 6*(n-5)*a(n-5) + (n-6)*a(n-6) ) for n > 5.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+3-k,4) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,4)*hypergeom([3/2, 1-n, 1+n/4, (5+n)/4, (6+n)/4, (7+n)/4], [6/5, 7/5, 8/5, 9/5, 2], 2^10/5^5)/12 for n > 0. - Stefano Spezia, Jul 11 2024

A359489 Expansion of 1/sqrt(1 - 4*x/(1-x)^3).

Original entry on oeis.org

1, 2, 12, 68, 396, 2358, 14262, 87252, 538440, 3345434, 20899816, 131154264, 826135794, 5220372274, 33077821314, 210087769632, 1337104370320, 8525602760550, 54449281992528, 348250972411252, 2230296171922008, 14300414859019290, 91791793780179790
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-(4x)/(1-x)^3],{x,0,30}],x] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^3))
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*k,k) * binomial(n+2*k-1,n-k)) \\ Winston de Greef, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n+2*k-1,n-k).
n*a(n) = (8*n-6)*a(n-1) - (10*n-24)*a(n-2) + 4*(n-3)*a(n-3) - (n-4)*a(n-4) for n > 3.
a(n) ~ sqrt(2*(2 + (35 + 3*sqrt(129))^(1/3))) * (40 + 7*(262 + 6*sqrt(129))^(1/3) + (262 + 6*sqrt(129))^(2/3))^n / ((43*(86 + 6*sqrt(129)))^(1/6) * sqrt(Pi*n) * 3^n * (262 + 6*sqrt(129))^(n/3)). - Vaclav Kotesovec, Mar 25 2023
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * binomial(n+1-k,2) * a(k). - Seiichi Manyama, Mar 28 2023

A361815 Expansion of 1/sqrt(1 - 4*x*(1-x)^2).

Original entry on oeis.org

1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 - x*y) * (x + y)).

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^2))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 2*(2*n-2)*a(n-2) + (2*n-3)*a(n-3) ) for n > 2.

A361816 Expansion of 1/sqrt(1 - 4*x*(1-x)^3).

Original entry on oeis.org

1, 2, 0, -10, -22, 12, 174, 344, -354, -3304, -5780, 9180, 65258, 99132, -226620, -1313580, -1690990, 5441340, 26681700, 28070100, -128211552, -543818824, -440381780, 2978145240, 11080939914, 6162798092, -68377892976, -225107280388, -64286124152
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^3))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(3*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 3*(2*n-2)*a(n-2) + 3*(2*n-3)*a(n-3) - (2*n-4)*a(n-4) ) for n > 3.

A361817 Expansion of 1/sqrt(1 - 4*x*(1-x)^4).

Original entry on oeis.org

1, 2, -2, -16, -10, 118, 304, -500, -3754, -2488, 30866, 83716, -135568, -1080972, -792876, 9090484, 25788118, -39325156, -335074520, -271779024, 2820643842, 8348113120, -11788972644, -107836934448, -96107852032, 900943403012, 2778574561276, -3596374190416
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^4))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) - 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.
Showing 1-8 of 8 results.