A359508 a(n) = log_2(A359507(n) - 1).
0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
Formula
Conjecture:
a(4k) = 1 for k > 0,
a(4k+1) = 2 for k > 0,
a(4k+2) = 1 for k > 0,
a(4k+3) = a(k) + 2 for k > 0.
Apparently, a(n) = abs(A378218(1+n)). [This holds at least up to n=65537] - Antti Karttunen, Nov 22 2024
a(n) = A007814((n - 3*b(n + 1) + 2) mod b(n + 1) + b(n + 2) - 1) + 1, where b(n) = 2^A000523(A002264(n)) for n >= 4. - Alan Michael Gómez Calderón, Feb 25 2025
Extensions
More terms from Antti Karttunen, Nov 22 2024
Comments