cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359508 a(n) = log_2(A359507(n) - 1).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Peter Kagey, Jan 03 2023

Keywords

Comments

Conjecture: A359507(n) is always of the form 2^m + 1.
If log_2(A359507(n) - 1) is not an integer, then define a(n) = -1.

Crossrefs

Programs

Formula

a(n) = A000523(A359507(n)-1).
Conjecture:
a(4k) = 1 for k > 0,
a(4k+1) = 2 for k > 0,
a(4k+2) = 1 for k > 0,
a(4k+3) = a(k) + 2 for k > 0.
Apparently, a(n) = abs(A378218(1+n)). [This holds at least up to n=65537] - Antti Karttunen, Nov 22 2024
a(n) = A007814((n - 3*b(n + 1) + 2) mod b(n + 1) + b(n + 2) - 1) + 1, where b(n) = 2^A000523(A002264(n)) for n >= 4. - Alan Michael Gómez Calderón, Feb 25 2025

Extensions

More terms from Antti Karttunen, Nov 22 2024