A359513 Number of partitions of n into at most 4 positive Fibonacci numbers (with a single type of 1).
1, 1, 2, 3, 4, 5, 6, 6, 8, 7, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 8, 7, 8, 9, 7, 10, 8, 8, 9, 7, 8, 8, 4, 8, 5, 8, 9, 6, 10, 8, 6, 10, 6, 9, 8, 5, 9, 6, 6, 8, 4, 8, 4, 1, 8, 4, 7, 9, 5, 10, 7, 6, 10, 6, 8, 6, 3, 10, 5, 7, 9, 5, 8, 5, 2, 9, 4, 7, 6, 2, 8, 4, 3, 8, 1, 4, 1
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i))))) end: a:= n-> (p-> add(coeff(p, x, i), i=0..4))(b(n, h(n))): seq(a(n), n=0..87); # Alois P. Heinz, Jan 03 2023
-
Mathematica
h[n_] := h[n] = If[n < 1, 0, With[{t = 5 n^2}, If[IntegerQ @ Sqrt[t + 4] || IntegerQ @ Sqrt[t - 4], n, h[n - 1]]]]; b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, h[i - 1]] + Expand[x*b[n - i, h[Min[n - i, i]]]]]; a[n_] := Sum[Coefficient[#, x, i], {i, 0, 4}]&[b[n, h[n]]]; Table[a[n], {n, 0, 87}] (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..4} A319394(n,k). - Alois P. Heinz, Jan 03 2023