A359515 Number of compositions (ordered partitions) of n into at most 3 positive Fibonacci numbers (with a single type of 1).
1, 1, 2, 4, 6, 9, 10, 11, 12, 12, 12, 14, 12, 12, 11, 12, 15, 12, 14, 12, 6, 12, 8, 14, 15, 9, 15, 12, 9, 14, 6, 12, 6, 0, 12, 8, 11, 17, 9, 15, 9, 6, 15, 9, 12, 9, 0, 14, 6, 6, 12, 0, 6, 0, 0, 12, 8, 11, 14, 9, 17, 9, 6, 15, 6, 9, 6, 0, 15, 9, 9, 12, 0, 9, 0, 0, 14, 6, 6, 6, 0, 12
Offset: 0
Keywords
Programs
-
Maple
g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end: b:= proc(n, t) option remember; `if`(n=0, 1, `if`(t<1, 0, add(`if`(g(j), b(n-j, t-1), 0), j=1..n))) end: a:= n-> b(n, 3): seq(a(n), n=0..81); # Alois P. Heinz, Jan 03 2023
-
Mathematica
g[n_] := With[{t = 5 n^2}, IntegerQ @ Sqrt[t+4] || IntegerQ @ Sqrt[t-4]]; b[n_, t_] := b[n, t] = If[n == 0, 1, If[t < 1, 0, Sum[If[g[j], b[n-j, t-1], 0], {j, 1, n}]]]; a[n_] := b[n, 3]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..3} A121548(n,k). - Alois P. Heinz, Jan 03 2023