A359516 Number of compositions (ordered partitions) of n into at most 4 positive Fibonacci numbers (with a single type of 1).
1, 1, 2, 4, 7, 13, 20, 27, 35, 40, 46, 50, 55, 60, 61, 60, 65, 68, 72, 76, 73, 72, 66, 66, 79, 73, 85, 80, 79, 90, 76, 84, 85, 60, 72, 56, 69, 85, 69, 99, 89, 70, 97, 73, 94, 97, 66, 90, 72, 70, 96, 60, 85, 60, 24, 72, 44, 71, 88, 57, 105, 85, 78, 111, 74, 97, 82, 48, 97, 69, 79
Offset: 0
Keywords
Programs
-
Maple
g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end: b:= proc(n, t) option remember; `if`(n=0, 1, `if`(t<1, 0, add(`if`(g(j), b(n-j, t-1), 0), j=1..n))) end: a:= n-> b(n, 4): seq(a(n), n=0..100); # Alois P. Heinz, Jan 03 2023
-
Mathematica
g[n_] := Function[t, IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4]][5 n^2]; b[n_, t_] := b[n, t] = If[n == 0, 1, If[t < 1, 0, Sum[If[g[j], b[n - j, t - 1], 0], {j, 1, n}]]]; a[n_] := b[n, 4]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..4} A121548(n,k). - Alois P. Heinz, Jan 03 2023