cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359588 Dirichlet inverse of A083346.

Original entry on oeis.org

1, -2, -3, 3, -5, 6, -7, -6, 6, 10, -11, -9, -13, 14, 15, 12, -17, -12, -19, -15, 21, 22, -23, 18, 20, 26, -10, -21, -29, -30, -31, -24, 33, 34, 35, 18, -37, 38, 39, 30, -41, -42, -43, -33, -30, 46, -47, -36, 42, -40, 51, -39, -53, 20, 55, 42, 57, 58, -59, 45, -61, 62, -42, 48, 65, -66, -67, -51, 69
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Comments

Multiplicative because A083346 is.

Crossrefs

Cf. A083346, A091428 (positions of odd terms), A359592 (parity of terms).
Cf. also A359577.

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, p], 1, p]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
    memoA359588 = Map();
    A359588(n) = if(1==n,1,my(v); if(mapisdefined(memoA359588,n,&v), v, v = -sumdiv(n,d,if(dA083346(n/d)*A359588(d),0)); mapput(memoA359588,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083346(n/d) * a(d).

A366292 Dirichlet inverse of A353271, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -2, -3, -1, 1, -1, -5, -3, -1, -1, 0, -1, 9, -5, -9, -1, 11, -4, -11, -4, 13, -1, 5, -1, -1, -9, -15, -5, 6, -1, -17, -11, 5, -1, 21, -1, 21, -2, -21, -1, 5, -6, -8, -15, 25, -1, 22, -9, 7, -17, -27, -1, 3, -1, -29, 14, -1, -11, 11, -1, 33, -21, -3, -1, 16, -1, -35, -8, 37, -9, 13
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Crossrefs

Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).
Cf. also A209635, A342417, A354347, A354823, A359432, A359433, A359577 for other sequences that are equal modulo 2.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A332449(n) = A005940(1+(3*A156552(n)));
    A353271(n) = (n / gcd(n, A332449(n)));
    memoA366292 = Map();
    A366292(n) = if(1==n,1,my(v); if(mapisdefined(memoA366292,n,&v), v, v = -sumdiv(n,d,if(dA353271(n/d)*A366292(d),0)); mapput(memoA366292,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA353271(n/d) * a(d).
Showing 1-2 of 2 results.