A359610 Numbers k such that the sum of the 5th powers of the digits of k is prime.
11, 101, 110, 111, 119, 128, 133, 182, 188, 191, 218, 223, 227, 229, 232, 247, 272, 274, 281, 292, 313, 322, 331, 337, 346, 359, 364, 368, 373, 377, 379, 386, 395, 397, 427, 436, 463, 472, 478, 487, 539, 557, 568, 575, 577, 586, 593, 634, 638, 643, 658, 667
Offset: 1
Examples
11 is a term since 1^5 + 1^5 = 2 is prime.
Crossrefs
Programs
-
Mathematica
top = 999; (* Find all terms <= top *) For[t = 11, t <= top, t++, k = IntegerLength[t]; sum = 0; For[e = 0, e <= k - 1, e++, sum = sum + NumberDigit[t, e]^5]; If[PrimeQ[sum] == True, Print[t]]] Select[Range[670],PrimeQ[Total[IntegerDigits[#]^5]] &] (* Stefano Spezia, Jan 08 2023 *)
-
PARI
isok(k) = isprime(vecsum(apply(x->x^5, digits(k)))); \\ Michel Marcus, Jan 07 2023
Comments