A359615 a(n) is the maximal determinant of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
1, 1, 3, 9, 512, 9195, 242931, 7459494, 524426191, 17012915860, 773407040859
Offset: 0
Examples
a(4) = 512: [ 1, 4*i, 2*i, 3*i; -4*i, 1, 4*i, 2*i; -2*i, -4*i, 1, 4*i; -3*i, -2*i, -4*i, 1 ]
Links
- Wikipedia, Toeplitz Matrix.
Crossrefs
Programs
-
Mathematica
a={1}; For[n=1, n<=8, n++, mx=-Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])>mx, mx=t]]]; AppendTo[a, mx]]; a
-
Python
from itertools import permutations from sympy import Matrix, I def A359615(n): return max(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) # Chai Wah Wu, Jan 25 2023