A359618 a(n) is the minimal absolute value of the determinant of a nonsingular n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with off-diagonal elements purely imaginary.
1, 1, 3, 9, 16, 21, 20, 17, 131, 62, 1
Offset: 0
Examples
a(4) = 16: [ 1, 2*i, 4*i, 3*i; -2*i, 1, 2*i, 4*i; -4*i, -2*i, 1, 2*i; -3*i, -4*i, -2*i, 1 ]
Links
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Mathematica
a={1}; For[n=1, n<=8, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[0<(t=Abs[Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]]])