cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A359762 Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers').

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 10, 7, 4, 1, 1, 1, 26, 25, 10, 5, 1, 1, 1, 76, 81, 46, 13, 6, 1, 1, 1, 232, 331, 166, 73, 16, 7, 1, 1, 1, 764, 1303, 856, 281, 106, 19, 8, 1, 1, 1, 2620, 5937, 3844, 1741, 426, 145, 22, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jan 14 2023

Keywords

Comments

The array is a generalization of the number of involutions of permutations on n letters, A000085, also known as 'telephone numbers'. According to Bednarz et al. the telephone number interpretation "is due to John Riordan, who noticed that T(n, 1) is the number of connection patterns in a telephone system with n subscribers."
In graph theory, the n-th telephone number is the total number of matchings of a complete graph K_n (see the Wikipedia entry). Assuming a network with k possibilities of connections leads to a network that can be modeled by a complete multigraph K(n, k). The total number of connection patterns in such a network is given by T(n, k).

Examples

			Array T(n, k) starts:
  [n\k] 0   1      2        3       4        5        6        7
  --------------------------------------------------------------
  [0] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [1] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [2] 1,    2,     3,       4,      5,       6,       7,       8, ... [A000027]
  [3] 1,    4,     7,      10,     13,      16,      19,      22, ... [A016777]
  [4] 1,   10,    25,      46,     73,     106,     145,     190, ... [A100536]
  [5] 1,   26,    81,     166,    281,     426,     601,     806, ...
  [6] 1,   76,   331,     856,   1741,    3076,    4951,    7456, ...
  [7] 1,  232,  1303,    3844,   8485,   15856,   26587,   41308, ...
  [8] 1,  764,  5937,   21820,  57233,  123516,  234529,  406652, ...
  [9] 1, 2620, 26785,  114076, 328753,  757756, 1510705, 2719900, ...
   [A000085][A047974][A115327][A115329][A115331]
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002).

Crossrefs

Programs

  • Maple
    T := (n, k) -> add(binomial(n, j)*doublefactorial(j-1)*k^(j/2), j = 0..n, 2):
    for n from 0 to 9 do lprint(seq(T(n, k), k = 0..7)) od;
    T := (n, k) -> ifelse(k=0, 1, I^(-n)*(2*k)^(n/2)*KummerU(-n/2, 1/2, -1/(2*k))):
    seq(seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
    T := proc(n, k) exp(x + (k/2)*x^2): series(%, x, 16): n!*coeff(%, x, n) end:
    seq(lprint(seq(simplify(T(n, k)), k = 0..8)), n = 0..9);
    T := proc(n, k) option remember; if n = 0 or n = 1 then 1 else T(n, k-1) +
    n*(k-1)*T(n, k-2) fi end: for n from 0 to 9 do seq(T(n, k), k=0..9) od;
    # Only to check the interpretation as a determinant of a lower Hessenberg matrix:
    gen := proc(i, j, n) local ev, tv; ev := irem(j+i, 2) = 0; tv := j < i and not ev;
    if j > i + 1 then 0 elif j = i + 1 then -1 elif j <= i and ev then 1
    elif tv and i < n then x*(n + 1 - i) - 1 else x fi end:
    det := M -> LinearAlgebra:-Determinant(M):
    p := (n, k) -> subs(x = k, det(Matrix(n, (i, j) -> gen(i, j, n)))):
    for n from 0 to 9 do seq(p(n, k), k = 0..7) od;
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] Factorial2[j-1] * If[j==0, 1,  k^(j/2)], {j, 0, n, 2}];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from math import factorial, comb
    def oddfactorial(n: int) -> int:
        return factorial(2 * n) // (2**n * factorial(n))
    def T(n: int, k: int) -> int:
        return sum(comb(n, 2 * j) * oddfactorial(j) * k**j for j in range(n + 1))
    for n in range(10): print([T(n, k) for k in range(8)])

Formula

T(n, k) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * k^(j/2).
T(n, k) = T(n, k-1) + n*(k-1)*T(n, k-2) for n >= 2, T(n, 0) = T(n, 1) = 1.
T(n, k) = i^(-n) * (2*k)^(n/2) * KummerU(-n/2, 1/2, -1/(2*k)) for k >= 1, and T(n, 0) = 1.

A359739 a(n) = Sum_{j=0..n, j even} binomial(n, j) * oddfactorial(j/2) * n^j, where oddfactorial(n) = (2*n)! / (2^n*n!).

Original entry on oeis.org

1, 1, 5, 28, 865, 9626, 758701, 12606280, 1872570113, 41351249980, 9925656304501, 273345587759696, 96567039881462305, 3185756105692821688, 1555524449985942662045, 59790093545794928817376, 38565845285812075675023361, 1692346747225524397926264080, 1393672439437011815394433559653
Offset: 0

Views

Author

Peter Luschny, Jan 12 2023

Keywords

Crossrefs

Cf. A359760.

Programs

  • Maple
    A359739 := n -> ifelse(n=0, 1, KummerU(-n/2, 1/2, -1/(2*n^2))*(-1/(2*n^2))^(-n/2)): seq(simplify(A359739(n)), n = 0..18);
  • Python
    from math import factorial, comb
    def oddfactorial(n: int) -> int: return factorial(2 * n) // (2**n * factorial(n))
    def a(n: int) -> int:
        return sum(comb(n, j) * oddfactorial(j//2) * n**j for j in range(0, n+1, 2))
    print([a(n) for n in range(19)])

Formula

Let K(n, x) = 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)) denote the Kummer polynomials, defined in A359760.
a(n) = K(n, n) for n >= 1.

A359761 a(n) = binomial(4*n, 2*n)*(2*n)!/(2^n*n!).

Original entry on oeis.org

1, 6, 210, 13860, 1351350, 174594420, 28109701620, 5421156741000, 1218404977539750, 312723944235202500, 90252130306279441500, 28929910132721937339000, 10197793321784482911997500, 3920659309406065045704885000, 1632674555274097086889962825000, 732091270584905133761459330730000
Offset: 0

Views

Author

Peter Luschny, Jan 14 2023

Keywords

Crossrefs

Cf. A359760.

Programs

  • Maple
    a := binomial(4*n, 2*n)*(2*n)!/(2^n*n!):
    seq(a(n), n = 0..15);

Formula

a(n) = (2^(3*n)*Gamma(2*n + 1/2))/(sqrt(Pi)*Gamma(n + 1)).
a(n) = A359760(4*n, 2*n), the central terms of the triangle without the zeros.
From R. J. Mathar, Jan 25 2023: (Start)
a(n) = A001448(n)*A001147(n).
D-finite with recurrence n*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. (End)
From Stefano Spezia, Aug 24 2025: (Start)
E.g.f.: 2*EllipticK(8*sqrt(2*x)/(1 + 4*sqrt(2*x)))/(Pi*sqrt(1 + 4*sqrt(2*x))).
E.g.f.: hypergeom([1/2, 1/2], [1], 8*sqrt(2*x)/(1 + 4*sqrt(2*x)))/sqrt(1 + 4*sqrt(2*x)). (End)
Showing 1-3 of 3 results.