cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359801 Number of 4-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.

Original entry on oeis.org

1, 8, 104, 2944, 108136, 4525888, 204981888, 9792786432, 486323201640, 24874892400064, 1302278744460352, 69474942954714112, 3764568243058030208, 206675027529594291200, 11473858525271117889536, 643154944963894079717376, 36355546411928157876528744, 2070313613815122857027563200
Offset: 0

Views

Author

Shel Kaphan, Mar 08 2023

Keywords

Comments

In Novak's note it is mentioned that if P(z) and Q(z) are the g.f.s for the probabilities of indecomposable and decomposable loops, respectively, that P(z) = 1 - 1/Q(z). This works equally well using loop counts rather than probabilities. The g.f.s may be expressed by the series constructed from the sequences of counts of loops of length 2*n. Q(z) for the 4-d case is the series corresponding to A039699.
To obtain the probability of returning to the point of origin for the first time after 2*n steps, divide a(n) by the total number of walks of length 2*n in d dimensions: (2*d)^(2*n) = 64^n.

Crossrefs

Cf. A039699, A287317 (number of walks that return to the origin in 2n steps).
Number of walks that return to the origin for the first time in 2n steps, in 1..3 dimensions: |A002420|, A054474, A049037.
Column k=4 of A361397.

Programs

  • Mathematica
    walk4d[n_] :=
     Sum[(2 n)!/(i! j! k! (n - i - j - k)!)^2, {i, 0, n}, {j, 0,
       n - i}, {k, 0, n - i - j}]; invertSeq[seq_] :=
      CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk4d[n], {n, 0, 17}]]
  • PARI
    seq(n) = {my(v=Vec(2 - 1/serlaplace(besseli(0, 2*x + O(x^(2*n+1)))^4))); vector(n+1, i, v[2*i-1])} \\ Andrew Howroyd, Mar 08 2023

Formula

G.f.: 2 - 1/Q(x) where Q(x) is the g.f. of A039699.
G.f.: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^4 dt.
INVERTi transform of A039699.