A359801 Number of 4-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.
1, 8, 104, 2944, 108136, 4525888, 204981888, 9792786432, 486323201640, 24874892400064, 1302278744460352, 69474942954714112, 3764568243058030208, 206675027529594291200, 11473858525271117889536, 643154944963894079717376, 36355546411928157876528744, 2070313613815122857027563200
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..550
- Dorin Dumitraşcu and Liviu Suciu, Asymptotics for the Number of Random Walks in the Euclidean Lattice, arXiv:2212.01702 [math.CO], 2022, p.11.
- Jonathan Novak, Pólya's Random Walk Theorem, The American Mathematical Monthly, Vol. 121, No. 8 (October 2014), pp. 711-716.
Crossrefs
Programs
-
Mathematica
walk4d[n_] := Sum[(2 n)!/(i! j! k! (n - i - j - k)!)^2, {i, 0, n}, {j, 0, n - i}, {k, 0, n - i - j}]; invertSeq[seq_] := CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk4d[n], {n, 0, 17}]]
-
PARI
seq(n) = {my(v=Vec(2 - 1/serlaplace(besseli(0, 2*x + O(x^(2*n+1)))^4))); vector(n+1, i, v[2*i-1])} \\ Andrew Howroyd, Mar 08 2023
Comments