A359813 Number of primes < 10^n with exactly one odd decimal digit.
3, 12, 45, 171, 619, 2560, 10774, 46708, 202635, 904603, 4073767, 18604618, 85445767, 395944114, 1837763447, 8600149593
Offset: 1
Examples
a(2)=12 as there are 12 primes less than 100 with exactly one odd decimal digit: 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89.
Programs
-
Mathematica
c=1; k=0; lst={}; f[n_] := Block[{e = 10 FromDigits[2 IntegerDigits[n, 5]]}, Length@ Select[e + {1, 3, 7, 9}, PrimeQ]]; Do[ While[k< 5^n, c+=f@k; k++]; Print[c], {n, 0, 16}] (* Robert G. Wilson v, Feb 04 2023 *)
-
Python
from sympy import isprime from itertools import product def a(n): c=3 if n==1:return(c) x=[[1,7],[1,3,7,9],[3,9],'2468','02468'] for k in range(2,n+1): for f in x[3]: for m in product(x[4], repeat=k-2): s = int(f+"".join(m))*10 t=s%3 for last in x[t]: if isprime(s+last): c+= 1 return(c) print([a(n) for n in range(1,7)])
-
Python
from sympy import primerange def a(n): p=list(primerange(3,10**n)) return(sum(1 for k in p if sum(str(k).count(d) for d in '13579')==1)) print([a(n) for n in range(1,7)])
Extensions
a(16) from Robert G. Wilson v, Feb 04 2023
Comments