cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359823 Dirichlet inverse of A359820, where A359820 is the characteristic function of numbers whose parity differs from the parity of their arithmetic derivative (A003415).

Original entry on oeis.org

1, -1, 0, 1, 0, -1, 0, -1, -1, -1, 0, 2, 0, -1, -1, 1, 0, 1, 0, 2, -1, -1, 0, -3, -1, -1, 0, 2, 0, 1, 0, -1, -1, -1, -1, 0, 0, -1, -1, -3, 0, 1, 0, 2, 0, -1, 0, 4, -1, 1, -1, 2, 0, 1, -1, -3, -1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, 2, -1, 1, 0, -2, 0, -1, 0, 2, -1, 1, 0, 4, 0, -1, 0, 1, -1, -1, -1, -3, 0, 3, -1, 2, -1, -1, -1, -5, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2023

Keywords

Crossrefs

Cf. A000035, A003415, A359820, A359824 (parity of the terms).
Cf. also A359763 [= a(A003961(n))], A359780.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A359820(n) = ((n+A003415(n))%2);
    memoA359823 = Map();
    A359823(n) = if(1==n,1,my(v); if(mapisdefined(memoA359823,n,&v), v, v = -sumdiv(n,d,if(dA359820(n/d)*A359823(d),0)); mapput(memoA359823,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA359820(n/d) * a(d).