cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A358863 a(n) is the smallest n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

4, 28, 16, 176, 4950, 8910, 1408, 346500, 277992, 7542080, 326656, 544320, 120400000, 145213440, 48549888, 4733575168, 536813568, 2149576704, 3057500160, 938539560960, 1358951178240, 36324805836800, 99956555776, 49212503949312, 118747221196800, 59461613912064, 13749193801728
Offset: 2

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 7, 4, 11, 50, 60, 22, 315, 264, 1295, 256, 315, 4480, 4727, 2634, 25123, 8192, 15903, 18432, 314315, 368640, ...
a(n) is the first n-gonal number k such that A001222(k)= n. - Robert Israel, Jan 15 2023

Examples

			a(3) = 28, because 28 is a triangular number with 3 prime factors (counted with multiplicity) {2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Maple
    g:= proc(s) local n, p, F;
      for n from 1 to 10^7 do
        p:= (s-2)*n*(n-1)/2 + n;
        if numtheory:-bigomega(p) = s then return p fi;
      od
    end proc:
    map(g, [$2..30]); # Robert Israel, Jan 15 2023
  • Mathematica
    sng[n_]:=Module[{k=1},While[PrimeOmega[PolygonalNumber[n,k]]!=n,k++];PolygonalNumber[ n,k]]; Array[sng,21,2] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Feb 19 2023 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 04 2022
    
  • PARI
    bigomega_polygonals(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(ispolygonal(t,k), listput(list, t))), forprime(q = p, sqrtnint(B\m, n), my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q, n-1))))); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=n) = if(k < 3, return()); my(x=2^n, y=2*x); while(1, my(v=bigomega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 04 2022

Formula

A001222(a(n)) = n. - Robert Israel, Jan 15 2023

Extensions

a(23)-a(28) from Daniel Suteu, Dec 04 2022
a(2)=4 prepended by Robert Israel, Jan 15 2023
Showing 1-1 of 1 results.