A359895 Number of odd-length integer partitions of n whose parts have the same mean as median.
0, 1, 1, 2, 1, 2, 3, 2, 1, 5, 5, 2, 5, 2, 8, 18, 1, 2, 19, 2, 24, 41, 20, 2, 9, 44, 31, 94, 102, 2, 125, 2, 1, 206, 68, 365, 382, 2, 98, 433, 155, 2, 716, 2, 1162, 2332, 196, 2, 17, 1108, 563, 1665, 3287, 2, 3906, 5474, 2005, 3083, 509, 2, 9029
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 5 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (111) (11111) (222) (1111111) (333) (321) (432) (531) (111111111) The a(15) = 18 partitions: (15) (5,5,5) (6,5,4) (7,5,3) (8,5,2) (9,5,1) (3,3,3,3,3) (4,3,3,3,2) (4,4,3,2,2) (4,4,3,3,1) (5,3,3,2,2) (5,3,3,3,1) (5,4,3,2,1) (5,5,3,1,1) (6,3,3,2,1) (6,4,3,1,1) (7,3,3,1,1) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
-
PARI
\\ P(n, k, m) is g.f. for k parts of max size m. P(n, k, m)={polcoef(1/prod(i=1, m, 1 - y*x^i + O(x*x^n)), k, y)} a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)+h); polcoef(P(r, h, m)*P(r, h, r), r))))} \\ Andrew Howroyd, Jan 21 2023
Formula
a(p) = 2 for prime p. - Andrew Howroyd, Jan 21 2023
Comments