cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359909 Number of integer factorizations of n into factors > 1 with the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 4, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 7, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 4, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1, 4, 1, 4, 5, 2, 1, 6, 1, 4, 2, 5, 1, 4, 2, 3, 3, 2, 2, 11
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(n) factorizations for n = 24, 36, 60, 120, 144, 360:
  24      36        60      120       144       360
  3*8     4*9       2*30    2*60      2*72      4*90
  4*6     6*6       3*20    3*40      3*48      5*72
  2*12    2*18      4*15    4*30      4*36      6*60
  2*3*4   3*12      5*12    5*24      6*24      8*45
          2*2*3*3   6*10    6*20      8*18      9*40
                    3*4*5   8*15      9*16      10*36
                            10*12     12*12     12*30
                            4*5*6     2*2*6*6   15*24
                            2*6*10    3*3*4*4   18*20
                            2*3*4*5             2*180
                                                3*120
                                                2*10*18
                                                3*4*5*6
		

Crossrefs

The version for partitions is A240219, complement A359894.
These multisets are ranked by A359889.
The version for strict partitions is A359897.
The odd-length case is A359910.
The complement is counted by A359911.
A001055 counts factorizations.
A058398 counts partitions by mean, see also A008284, A327482.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Mean[#]==Median[#]&]],{n,100}]
  • PARI
    median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2);
    A359909(n, m=n, facs=List([])) = if(1==n, (#facs>0 && (median(facs)==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359909(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025