A359909 Number of integer factorizations of n into factors > 1 with the same mean as median.
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 4, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 7, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 4, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1, 4, 1, 4, 5, 2, 1, 6, 1, 4, 2, 5, 1, 4, 2, 3, 3, 2, 2, 11
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 24, 36, 60, 120, 144, 360: 24 36 60 120 144 360 3*8 4*9 2*30 2*60 2*72 4*90 4*6 6*6 3*20 3*40 3*48 5*72 2*12 2*18 4*15 4*30 4*36 6*60 2*3*4 3*12 5*12 5*24 6*24 8*45 2*2*3*3 6*10 6*20 8*18 9*40 3*4*5 8*15 9*16 10*36 10*12 12*12 12*30 4*5*6 2*2*6*6 15*24 2*6*10 3*3*4*4 18*20 2*3*4*5 2*180 3*120 2*10*18 3*4*5*6
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],Mean[#]==Median[#]&]],{n,100}]
-
PARI
median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2); A359909(n, m=n, facs=List([])) = if(1==n, (#facs>0 && (median(facs)==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359909(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025
Extensions
More terms from Antti Karttunen, Jan 20 2025
Comments