A359910 Number of odd-length integer factorizations of n into factors > 1 with the same mean as median.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 120, 960, 5760, 6720: 120 960 5760 6720 4*5*6 2*16*30 16*18*20 4*30*56 2*6*10 4*12*20 3*5*6*8*8 10*21*32 8*10*12 4*4*6*6*10 12*20*28 3*4*4*4*5 2*2*8*10*18 4*5*6*7*8 2*2*2*4*4*5*9 2*4*7*10*12 2*2*2*4*5*6*7
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
A001055 counts factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,100}]
-
PARI
A359910(n, m=n, facs=List([])) = if(1==n, (((#facs)%2) && (facs[(1+#facs)/2]==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359910(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025
Extensions
More terms from Antti Karttunen, Jan 20 2025
Comments