cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359910 Number of odd-length integer factorizations of n into factors > 1 with the same mean as median.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(n) factorizations for n = 120, 960, 5760, 6720:
  120      960         5760            6720
  4*5*6    2*16*30     16*18*20        4*30*56
  2*6*10   4*12*20     3*5*6*8*8       10*21*32
           8*10*12     4*4*6*6*10      12*20*28
           3*4*4*4*5   2*2*8*10*18     4*5*6*7*8
                       2*2*2*4*4*5*9   2*4*7*10*12
                                       2*2*2*4*5*6*7
		

Crossrefs

The version for partitions is A359895, ranked by A359891.
This is the odd-length case of A359909, partitions A240219.
A001055 counts factorizations.
A326622 counts factorizations with integer mean, strict A328966.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,100}]
  • PARI
    A359910(n, m=n, facs=List([])) = if(1==n, (((#facs)%2) && (facs[(1+#facs)/2]==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359910(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025