A359920
a(n) = coefficient of x^n in A(x) such that x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 1, 6, 29, 137, 690, 3815, 22579, 138353, 862692, 5451339, 34911444, 226475135, 1485571965, 9833401534, 65578882177, 440170565711, 2971402946711, 20161828468803, 137434420403678, 940701180157773, 6462787501335564, 44550102080595910, 308041365014677804, 2135938633975050831
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 29*x^3 + 137*x^4 + 690*x^5 + 3815*x^6 + 22579*x^7 + 138353*x^8 + 862692*x^9 + 5451339*x^10 + 34911444*x^11 + 226475135*x^12 + ...
where A = A(x) satisfies the doubly infinite sum
x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
SPECIFIC VALUES.
A(x) at x = 100/738 diverges.
A(100/739) = 1.680090298639836342808608867776256534712736768391...
A(1/8) = 1.40048762211279862753069563580599076131617792526323...
A(1/9) = 1.28067125711115350114265686789651886973848631068277...
-
(* Calculation of constant d: *) With[{k = 1}, 1/r /. FindRoot[{r^3*s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[1/(r*s), r] * QPochhammer[s, r] * QPochhammer[s^2/r, r^2] / ((-1 + s)*(-1 + r*s)*(-r + s^2)*(-1 + r*s^2)) == k*r, 1/(-1 + s) + 1/(s*(-1 + r*s)) + (2*s)/(-r + s^2) - 2/(s - r*s^3) + (-QPolyGamma[0, -Log[r*s]/Log[r], r] + QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s^2]/Log[r^2], r^2] + QPolyGamma[0, Log[s^2/r]/Log[r^2], r^2]) / (s*Log[r]) == 0}, {r, 1/7}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 18 2024 *)
-
/* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x - sum(m=-#A,#A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ),#A-1) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x - prod(m=1,#A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ),#A-1) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
A359914
a(n) = coefficient of x^n in A(x) such that 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(3*n-1)/2) * A(x)^(3*n) * (1 + x^n*A(x)).
Original entry on oeis.org
1, 2, 4, 30, 154, 1078, 7046, 50766, 364268, 2713444, 20384884, 155954760, 1204192106, 9400024042, 73945396990, 586088682472, 4673927031694, 37484566094970, 302098932029282, 2445538771089012, 19875632898821430, 162118004651048048, 1326658157736876148
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 30*x^3 + 154*x^4 + 1078*x^5 + 7046*x^6 + 50766*x^7 + 364268*x^8 + 2713444*x^9 + 20384884*x^10 + ...
where A = A(x) satisfies the doubly infinite sum
2 = ... + x^26/A^12*(1 + 1/x^4*A) - x^15/A^9*(1 + 1/x^3*A) + x^7/A^6*(1 + 1/x^2*A) - x^2/A^3*(1 + 1/x^1*A) + x^0*A^0*(1 + x^0*A) - x^1*A^3*(1 + x^1*A) + x^5*A^6*(1 + x^2*A) - x^12*A^9*(1 + x^3*A) + x^22*A^12*(1 + x^4*A) + ... + (-1)^n*x^(n*(3*n+1)/2)*A^(3*n)*(1 + x^n*A) + ...
also, by the Watson quintuple product identity,
2 = (1-x)*(1+1*A)*(1+x/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1+x*A)*(1+x^2/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1+x^2*A)*(1+x^3/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1+x^3*A)*(1+x^4/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
SPECIFIC VALUES.
A(x) at x = 100/876 diverges.
A(100/877) = 1.557056751214068970380867667963285879403994350720494...
A(1/9) = 1.450191456209956107571253359997937360795442585014595870...
A(1/10) = 1.324252801492679846747365280925526932201317768972870665...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r^3 * s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[-1/s, r] * QPochhammer[-s/r, r] * QPochhammer[s^2/r, r^2] / ((1 + s)*(r + s)*(-r + s^2)*(-1 + r*s^2)) == -2, (-3*r^2 - 2*r*(1 + r)*s + r^3*s^2 - s^4 + 2*r*(1 + r)*s^5 + 3*r*s^6) * Log[r] + (1 + s)*(r + s)*(r - s^2)*(-1 + r*s^2) * (QPolyGamma[0, Log[-1/s]/Log[r], r] + QPolyGamma[0, -1/2 - Log[s]/Log[r], r^2] - QPolyGamma[0, -1/2 + Log[s]/Log[r], r^2] - QPolyGamma[0, Log[-s/r]/Log[r], r]) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
-
/* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(2 - sum(m=-#A, #A, (-1)^m * x^(m*(3*m-1)/2) * Ser(A)^(3*m) * (1 + x^m*Ser(A)) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(2 - prod(m=1, #A, (1 - x^m) * (1 + x^(m-1)*Ser(A)) * (1 + x^m/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A359919
a(n) = coefficient of x^n in A(x) such that x^2 = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 0, 1, 5, 19, 65, 211, 681, 2255, 7830, 28786, 111230, 443789, 1795972, 7284981, 29466755, 118834438, 479034654, 1936617163, 7872885832, 32226147305, 132808096158, 550444192577, 2291095125465, 9564074472264, 40005894288101, 167610376198140, 703308153554903
Offset: 0
G.f.: A(x) = 1 + x^2 + 5*x^3 + 19*x^4 + 65*x^5 + 211*x^6 + 681*x^7 + 2255*x^8 + 7830*x^9 + 28786*x^10 + 111230*x^11 + 443789*x^12 + ...
where A = A(x) satisfies the doubly infinite sum
x^2 = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
x^2 = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[1,0]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^2 - sum(m=-#A,#A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ),#A-1) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1,0]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^2 - prod(m=1,#A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ),#A-1) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
A359915
a(n) = coefficient of x^n in A(x) such that A(x) = Sum_{n=-oo..+oo} (x*A(x))^(n*(3*n+1)/2) * (1/x^(3*n) - x^(3*n+1)).
Original entry on oeis.org
1, 1, 5, 23, 121, 713, 4487, 29374, 197896, 1363770, 9570226, 68156319, 491347930, 3578755113, 26295477075, 194677798065, 1450833583380, 10875262975274, 81940144475296, 620223662770067, 4714016885082577, 35962615212212852, 275282740190267268, 2113705107245941938
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 23*x^3 + 121*x^4 + 713*x^5 + 4487*x^6 + 29374*x^7 + 197896*x^8 + 1363770*x^9 + 9570226*x^10 + ...
where A = A(x) satisfies the doubly infinite series
A(x) = ... + (x*A)^12*(x^9 - 1/x^8) + (x*A)^5*(x^6 - 1/x^5) + (x*A)*(x^3 - 1/x^2) + (1 - x) + (x*A)^2*(1/x^3 - x^4) + (x*A)^7*(1/x^6 - x^7) + (x*A)^15*(1/x^9 - x^10) + ... + (x*A)^(n*(3*n+1)/2) * (1/x^(3*m) - x^(3*m+1)) + ...
also, by the Watson quintuple product identity,
A(x) = -x * (1-x*A)*(1-x^2*A)*(1-1/x)*(1-x^3*A)*(1-1/x*A) * (1-x^2*A^2)*(1-x^3*A^2)*(1-A)*(1-x^5*A^3)*(1-x*A^3) * (1-x^3*A^3)*(1-x^4*A^3)*(1-x*A^2)*(1-x^7*A^5)*(1-x^3*A^5) * (1-x^4*A^4)*(1-x^5*A^4)*(1-x^2*A^3)*(1-x^9*A^7)*(1-x^5*A^7) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A) - sum(m=-#A, #A, (x*Ser(A))^(m*(3*m+1)/2) * (1/x^(3*m) - x^(3*m+1)) ),#A-2) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A) + x*prod(m=1,#A, (1 - x^m*Ser(A)^m) * (1 - x^(m+1)*Ser(A)^m) * (1 - x^(m-2)*Ser(A)^(m-1)) * (1 - x^(2*m+1)*Ser(A)^(2*m-1)) * (1 - x^(2*m-3)*Ser(A)^(2*m-1))),#A-2) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
Showing 1-4 of 4 results.
Comments