cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359919 a(n) = coefficient of x^n in A(x) such that x^2 = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

Original entry on oeis.org

1, 0, 1, 5, 19, 65, 211, 681, 2255, 7830, 28786, 111230, 443789, 1795972, 7284981, 29466755, 118834438, 479034654, 1936617163, 7872885832, 32226147305, 132808096158, 550444192577, 2291095125465, 9564074472264, 40005894288101, 167610376198140, 703308153554903
Offset: 0

Views

Author

Paul D. Hanna, Jan 22 2023

Keywords

Examples

			G.f.: A(x) = 1 + x^2 + 5*x^3 + 19*x^4 + 65*x^5 + 211*x^6 + 681*x^7 + 2255*x^8 + 7830*x^9 + 28786*x^10 + 111230*x^11 + 443789*x^12 + ...
where A = A(x) satisfies the doubly infinite sum
x^2 = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
x^2 = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
		

Crossrefs

Programs

  • PARI
    /* Using the doubly infinite series */
    {a(n) = my(A=[1,0]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(x^2 - sum(m=-#A,#A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ),#A-1) ); A[n+1]}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    /* Using the quintuple product */
    {a(n) = my(A=[1,0]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(x^2 - prod(m=1,#A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ),#A-1) ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
(1) x^2 = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
(2) x^2 = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.