A359938 Number of divisors d of n such that d-1 is square.
1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 5, 2, 3, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 3, 1, 4, 1, 2, 1, 3, 2, 2, 1, 3, 1, 4, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4
Offset: 1
Keywords
Programs
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2 + 1)/(1 - x^(k^2 + 1)), {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 19 2023 *) Table[Sum[Floor[n/(k^2 + 1)] - Floor[(n-1)/(k^2 + 1)], {k, 0, Sqrt[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 19 2023 *)
-
PARI
a(n) = sumdiv(n, d, issquare(d-1));
-
PARI
my(N=100, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), x^(k^2+1)/(1-x^(k^2+1))))
Formula
G.f.: Sum_{k>=0} x^(k^2+1)/(1 - x^(k^2+1)).
From Vaclav Kotesovec, Jan 19 2023: (Start)
a(n) = Sum_{k=0..n} (floor(n/(k^2 + 1)) - floor((n-1)/(k^2 + 1))).
Sum_{k=1..n} a(k) = Sum_{k=0..n} floor(n/(k^2 + 1)).
Sum_{k=1..n} a(k) ~ c*n, where c = A113319 = (1 + Pi*coth(Pi))/2 = 2.0766... (End)
Comments