A359944 Number of divisors d of n such that d-1 is a cube.
1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := DivisorSum[n, 1 &, IntegerQ[Surd[#-1, 3]] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
-
PARI
a(n) = sumdiv(n, d, ispower(d-1, 3));
Formula
G.f.: Sum_{k>=0} x^(k^3+1)/(1 - x^(k^3+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(k^3+1) = 1 + A339606 = 1.686503... . - Amiram Eldar, Jan 01 2024
Comments