cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359944 Number of divisors d of n such that d-1 is a cube.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2023

Keywords

Comments

The Cartesian equation for the Folium of Descartes is given as x^3 + y^3 = 3*k*x*y. If we set 3*k = n, then a(n)-1 is the number of integer solutions such that x,y > 0 and y >= x. Let d = m^3+1 be a divisor of n, then x = 3*k*m/(m^3+1); y = 3*k*m^2/(m^3+1) is a solution. - Thomas Scheuerle, Aug 07 2024

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, IntegerQ[Surd[#-1, 3]] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, ispower(d-1, 3));

Formula

G.f.: Sum_{k>=0} x^(k^3+1)/(1 - x^(k^3+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(k^3+1) = 1 + A339606 = 1.686503... . - Amiram Eldar, Jan 01 2024