A359953 a(1) = 0, a(2) = 1. For n >= 3, if the greatest prime dividing n is greater than the greatest prime dividing n-1, then a(n) = a(n-1) + 1. Otherwise a(n) = a(n-1) - 1.
0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3
Offset: 1
Examples
a(5) = a(4) + 1 = 1 + 1 = 2 because A006530(5) = 5 > A006530(4) = 2.
Programs
-
MATLAB
function a = A359953(max_n) a = [0 cumsum(sign(diff([0 arrayfun(@(x)(max(factor(x))),[2:max_n])])))]; end % Thomas Scheuerle, Jan 20 2023
-
Mathematica
Join[{0}, Accumulate@ Sign@ Differences@ Table[FactorInteger[n][[-1, 1]], {n, 1, 100}]] (* Amiram Eldar, Jan 20 2023, after the MATLAB code *)
-
PARI
lista(nn) = my(va = vector(nn)); va[1] = 0; va[2] = 1; for (n=3, nn, if (vecmax(factor(n)[,1]) > vecmax(factor(n-1)[,1]), va[n] = va[n-1] + 1, va[n] = va[n-1] - 1);); va; \\ Michel Marcus, Jan 31 2023
Comments