A209406
Triangular array read by rows: T(n,k) is the number of multisets of exactly k nonempty binary words with a total of n letters.
Original entry on oeis.org
2, 4, 3, 8, 8, 4, 16, 26, 12, 5, 32, 64, 44, 16, 6, 64, 164, 132, 62, 20, 7, 128, 384, 376, 200, 80, 24, 8, 256, 904, 1008, 623, 268, 98, 28, 9, 512, 2048, 2632, 1792, 870, 336, 116, 32, 10, 1024, 4624, 6624, 5040, 2632, 1117, 404, 134, 36, 11
Offset: 1
Triangle T(n,k) begins:
2;
4, 3;
8, 8, 4;
16, 26, 12, 5;
32, 64, 44, 16, 6;
64, 164, 132, 62, 20, 7;
128, 384, 376, 200, 80, 24, 8;
256, 904, 1008, 623, 268, 98, 28, 9;
512, 2048, 2632, 1792, 870, 336, 116, 32, 10;
...
-
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
binomial(2^i+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Apr 13 2017
-
nn = 10; p[x_, y_] := Product[1/(1 - y x^i)^(2^i), {i, 1, nn}]; f[list_] := Select[lst, # > 0 &]; Map[f, Drop[CoefficientList[Series[p[x, y], {x, 0, nn}], {x, y}], 1]] // Flatten
A360626
Number of multisets of nonempty words over binary alphabet where each letter occurs n times.
Original entry on oeis.org
1, 3, 21, 131, 830, 5066, 30456, 179256, 1038593, 5928071, 33402561, 186021335, 1025162709, 5596047683, 30282832593, 162573152651, 866385400935, 4585861723905, 24120596727003, 126124094912499, 655868112470175, 3393060517486981, 17468543071082489
Offset: 0
a(0) = 1: {}.
a(1) = 3: {ab}, {ba}, {a,b}.
a(2) = 21: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ab}, {ab,ba}, {aba,b}, {b,baa}, {ba,ba}, {a,a,bb}, {a,ab,b}, {a,b,ba}, {aa,b,b}, {a,a,b,b}.
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
a:= n-> coeff(b(2*n$2), x, n):
seq(a(n), n=0..31);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
a[n_] := Coefficient[b[2n, 2n], x, n];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Nov 17 2023, after Alois P. Heinz *)
Showing 1-2 of 2 results.
Comments