cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A209406 Triangular array read by rows: T(n,k) is the number of multisets of exactly k nonempty binary words with a total of n letters.

Original entry on oeis.org

2, 4, 3, 8, 8, 4, 16, 26, 12, 5, 32, 64, 44, 16, 6, 64, 164, 132, 62, 20, 7, 128, 384, 376, 200, 80, 24, 8, 256, 904, 1008, 623, 268, 98, 28, 9, 512, 2048, 2632, 1792, 870, 336, 116, 32, 10, 1024, 4624, 6624, 5040, 2632, 1117, 404, 134, 36, 11
Offset: 1

Views

Author

Geoffrey Critzer, Mar 08 2012

Keywords

Comments

Equivalently, T(n,k) is the number of partitions of the integer n with two types of 1's, four types of 2's, ..., 2^i types of i's...; having exactly k summands (of any type).
Row sums = A034899.

Examples

			Triangle T(n,k) begins:
    2;
    4,    3;
    8,    8,    4;
   16,   26,   12,    5;
   32,   64,   44,   16,   6;
   64,  164,  132,   62,  20,   7;
  128,  384,  376,  200,  80,  24,   8;
  256,  904, 1008,  623, 268,  98,  28,  9;
  512, 2048, 2632, 1792, 870, 336, 116, 32, 10;
  ...
		

Crossrefs

T(2n,n) gives A359962.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(2^i+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    nn = 10; p[x_, y_] := Product[1/(1 - y x^i)^(2^i), {i, 1, nn}]; f[list_] := Select[lst, # > 0 &]; Map[f, Drop[CoefficientList[Series[p[x, y], {x, 0, nn}], {x, y}], 1]] // Flatten

Formula

O.g.f.: Product_{i>=1} 1/(1-y*x^i)^(2^i).

A360626 Number of multisets of nonempty words over binary alphabet where each letter occurs n times.

Original entry on oeis.org

1, 3, 21, 131, 830, 5066, 30456, 179256, 1038593, 5928071, 33402561, 186021335, 1025162709, 5596047683, 30282832593, 162573152651, 866385400935, 4585861723905, 24120596727003, 126124094912499, 655868112470175, 3393060517486981, 17468543071082489
Offset: 0

Views

Author

Alois P. Heinz, Feb 14 2023

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {ab}, {ba}, {a,b}.
a(2) = 21: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ab}, {ab,ba}, {aba,b}, {b,baa}, {ba,ba}, {a,a,bb}, {a,ab,b}, {a,b,ba}, {aa,b,b}, {a,a,b,b}.
		

Crossrefs

Cf. A055375, A359962, A360638 (the same for sets).

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    a:= n-> coeff(b(2*n$2), x, n):
    seq(a(n), n=0..31);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    a[n_] := Coefficient[b[2n, 2n], x, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Nov 17 2023, after Alois P. Heinz *)

Formula

a(n) = [x^(2n)*y^n] Product_{i>=1} Product_{j=0..i} 1/(1-x^i*y^j)^binomial(i,j).
a(n) = A055375(2n,n).
Showing 1-2 of 2 results.