cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359963 Arithmetic numbers (A003601) having more divisors than all smaller arithmetic numbers.

Original entry on oeis.org

1, 3, 6, 20, 30, 60, 168, 420, 840, 1980, 2160, 2520, 7560, 10080, 15120, 27720, 79200, 83160, 110880, 166320, 262080, 332640, 554400, 786240, 831600, 1081080, 1441440, 2162160, 2882880, 4324320, 7207200, 8648640, 10810800, 17297280, 21621600, 36756720, 43243200
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2023

Keywords

Comments

The corresponding numbers of divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, ... .
This sequence is infinite since there are arithmetic numbers with any number of divisors (see A359965).

Crossrefs

Subsequence of A003601.
Similar sequences: A002182, A335317, A359964.

Programs

  • Mathematica
    seq[nmax_] := Module[{s = {}, dm = 0, d}, Do[d = DivisorSigma[0, n]; If[d > dm && Divisible[DivisorSigma[1, n], d], dm = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^6]
  • PARI
    lista(nmax) = {my(dm = 0, d); for(n = 1, nmax, d = numdiv(n); if(d > dm && sigma(n)%d == 0, dm = d; print1(n, ", "))); }

A364726 Admirable numbers with more divisors than any smaller admirable number.

Original entry on oeis.org

12, 24, 84, 120, 672, 24384, 43065, 78975, 81081, 261261, 523776, 9124731, 13398021, 69087249, 91963648, 459818240, 39142675143, 51001180160
Offset: 1

Views

Author

Amiram Eldar, Aug 05 2023

Keywords

Comments

The corresponding numbers of divisors are 6, 8, 12, 16, 24, 28, 32, 36, 40, 48, 80, 90, 96, 120, 144, 288, 360, 480, ... .
If there are infinitely many even perfect numbers (A000396), then this sequence is infinite, because if p is a Mersenne prime exponent (A000043) and q is an odd prime that does not divide 2^p-1, then 2^(p-1)*(2^p-1)*q is an admirable number with 4*p divisors (see A165772).
a(19) > 10^11.

Crossrefs

Programs

  • Mathematica
    admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
  • PARI
    isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0;}
    lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k,", ")));}
Showing 1-2 of 2 results.