A360103
a(n) = Sum_{k=0..n} binomial(n+4*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 2, 9, 49, 283, 1715, 10793, 69906, 463031, 3122264, 21363065, 147951489, 1035173405, 7306326465, 51959150713, 371950057003, 2678083379707, 19381867703946, 140915907625531, 1028760981192771, 7538511404971231, 55427326349613665, 408789584900354397
Offset: 0
-
A360103 := proc(n)
add(binomial(n+4*k,n-k)*A000108(k),k=0..n) ;
end proc:
seq(A360103(n),n=0..40) ; # R. J. Mathar, Mar 12 2023
-
a(n) = sum(k=0, n, binomial(n+4*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^5))))
A360101
a(n) = Sum_{k=0..n} binomial(n+4*k-1,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 7, 40, 234, 1432, 9078, 59113, 393125, 2659233, 18240801, 126588424, 887221916, 6271153060, 44652824248, 319990906290, 2306133322704, 16703784324239, 121534039921585, 887845073567240, 6509750423778460, 47888814944642434, 353362258550740732
Offset: 0
-
A360101 := proc(n)
add(binomial(n+4*k-1,n-k)*A000108(k),k=0..n) ;
end proc:
seq(A360101(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
m = 23;
A[_] = 0;
Do[A[x_] = 1 + x A[x]^2/(1 - x)^5 + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
-
a(n) = sum(k=0, n, binomial(n+4*k-1, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^5)))
A358518
a(n) = Sum_{k=0..n} binomial(n+3*k+3,n-k) * Catalan(k).
Original entry on oeis.org
1, 5, 20, 85, 405, 2116, 11766, 68237, 407789, 2492553, 15506942, 97859544, 624880895, 4029896310, 26209648212, 171711104853, 1132143259711, 7506530891217, 50019287312324, 334784759816729, 2249720564735567, 15172573979205166, 102662981205576494
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+3, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/((1-x)^4*(1+sqrt(1-4*x/(1-x)^4))))
A360060
a(n) = Sum_{k=0..n} (-1)^k * binomial(n+4*k+4,n-k) * Catalan(k).
Original entry on oeis.org
1, 4, 7, 5, 4, 29, 50, -83, -185, 743, 1425, -5250, -9868, 40530, 73280, -319155, -557485, 2573032, 4341065, -21107670, -34398290, 175655925, 276438452, -1479202280, -2247154681, 12581036223, 18440253397, -107916225837, -152514334540, 932452267956, 1269723550920
Offset: 0
-
a(n) = sum(k=0, n, (-1)^k*binomial(n+4*k+4, n-k)*binomial(2*k, k)/(k+1));
-
my(N=40, x='x+O('x^N)); Vec(2/((1-x)^5*(1+sqrt(1+4*x/(1-x)^5))))
Showing 1-4 of 4 results.