cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360058 a(n) = Sum_{k=0..n} (-1)^k * binomial(n+2*k+2,n-k) * Catalan(k).

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 2, 4, 5, 0, 4, 13, -7, -7, 48, -16, -93, 180, 74, -584, 517, 1111, -2850, 207, 8281, -10738, -11740, 46967, -22167, -115845, 211052, 94468, -766989, 660110, 1554938, -3983408, 121429, 12272689, -15692006, -18841086, 72792247, -31828764
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+2*k+2, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(2/((1-x)^3*(1+sqrt(1+4*x/(1-x)^3))))

Formula

a(n) = binomial(n+2,2) - Sum_{k=0..n-1} a(k) * a(n-k-1).
G.f. A(x) satisfies A(x) = 1/(1-x)^3 - x * A(x)^2.
G.f.: 2 / ( (1-x)^3 * (1 + sqrt( 1 + 4*x/(1-x)^3 )) ).
D-finite with recurrence (n+1)*a(n) -2*a(n-1) +2*(n-3)*a(n-2) +4*(-n+2)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Jan 25 2023

A360059 a(n) = Sum_{k=0..n} (-1)^k * binomial(n+3*k+3,n-k) * Catalan(k).

Original entry on oeis.org

1, 3, 4, 3, 5, 12, 6, -13, 29, 95, -130, -304, 895, 1050, -5068, -2181, 27743, -5481, -143532, 117983, 700831, -1074414, -3163138, 7872784, 12585117, -51587107, -38040886, 312988334, 18178883, -1779688404, 1013771196, 9485832411, -11749675733, -46878057651
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k Binomial[n+3k+3,n-k]CatalanNumber[k],{k,0,n}],{n,0,40}] (* Harvey P. Dale, May 06 2024 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+3*k+3, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(2/((1-x)^4*(1+sqrt(1+4*x/(1-x)^4))))

Formula

a(n) = binomial(n+3,3) - Sum_{k=0..n-1} a(k) * a(n-k-1).
G.f. A(x) satisfies A(x) = 1/(1-x)^4 - x * A(x)^2.
G.f.: 2 / ( (1-x)^4 * (1 + sqrt( 1 + 4*x/(1-x)^4 )) ).
D-finite with recurrence (n+1)*a(n) +(-n-2)*a(n-1) +6*(n-2)*a(n-2) +10*(-n+2)*a(n-3) +5*(n-3)*a(n-4) +(-n+4)*a(n-5)=0. - R. J. Mathar, Jan 25 2023
Showing 1-2 of 2 results.