cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360087 a(n) = Sum_{k=0..n} (-1)^k * binomial(3*k,n-k).

Original entry on oeis.org

1, -1, -2, 2, 6, -5, -17, 12, 48, -28, -135, 63, 378, -134, -1054, 259, 2927, -408, -8096, 280, 22305, 1551, -61210, -10638, 167310, 46683, -455489, -175852, 1234960, 612380, -3334215, -2031953, 8962498, 6523626, -23981046, -20445373, 63855135, 62900496
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(3*k, n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1+x*(1+x)^3))

Formula

a(n) = -a(n-1) - 3*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: 1/(1 + x*(1+x)^3).

A360088 a(n) = Sum_{k=0..n} (-1)^k * binomial(4*k,n-k).

Original entry on oeis.org

1, -1, -3, 1, 13, 4, -49, -46, 165, 284, -476, -1417, 1003, 6220, -110, -24644, -14831, 88184, 113224, -278288, -619744, 715647, 2891977, -1036173, -12068353, -3381661, 45588556, 41600921, -154355594, -259984429, 448828716, 1305250324, -964837159, -5754843123
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(4*k, n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1+x*(1+x)^4))

Formula

a(n) = -a(n-1) - 4*a(n-2) - 6*a(n-3) - 4*a(n-4) - a(n-5).
G.f.: 1/(1 + x*(1+x)^4).
Showing 1-2 of 2 results.