A367789
E.g.f. satisfies A(x) = exp( x/(1-x)^3 * A(x) ).
Original entry on oeis.org
1, 1, 9, 106, 1697, 35076, 893947, 27165706, 960298593, 38751082552, 1758831242291, 88726543365054, 4926355857050641, 298605321687360676, 19623211558172733435, 1389870724939251455506, 105556814502357807727553, 8557797733469700008170224
Offset: 0
-
A367789 := proc(n)
n!*add((k+1)^(k-1) * binomial(n+2*k-1,n-k)/k!,k=0..n) ;
end proc:
seq(A367789(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^3))))
A360102
a(n) = Sum_{k=0..n} binomial(n+2*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 2, 7, 30, 141, 703, 3655, 19603, 107679, 602756, 3426049, 19721069, 114728723, 673494466, 3984493735, 23732956453, 142204128507, 856560123504, 5183708936061, 31502904805922, 192180259402691, 1176416604202925, 7223943302003917, 44486888142708088
Offset: 0
-
A360102 := proc(n)
add(binomial(n+2*k,n-k)*A000108(k),k=0..n) ;
end proc:
seq(A360102(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a(n) = sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^3))))
A360101
a(n) = Sum_{k=0..n} binomial(n+4*k-1,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 7, 40, 234, 1432, 9078, 59113, 393125, 2659233, 18240801, 126588424, 887221916, 6271153060, 44652824248, 319990906290, 2306133322704, 16703784324239, 121534039921585, 887845073567240, 6509750423778460, 47888814944642434, 353362258550740732
Offset: 0
-
A360101 := proc(n)
add(binomial(n+4*k-1,n-k)*A000108(k),k=0..n) ;
end proc:
seq(A360101(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
m = 23;
A[_] = 0;
Do[A[x_] = 1 + x A[x]^2/(1 - x)^5 + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
-
a(n) = sum(k=0, n, binomial(n+4*k-1, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^5)))
A382921
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^3 )^3.
Original entry on oeis.org
1, 3, 24, 199, 1776, 16713, 163429, 1644852, 16929576, 177384877, 1885842105, 20292695751, 220595817213, 2418988309494, 26726104358958, 297226167487469, 3324654200094495, 37379224636055040, 422182501323170275, 4788001977121735326, 54502930562354983641
Offset: 0
-
a(n, r=3, s=3, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
A367281
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^3)^3.
Original entry on oeis.org
1, 1, 5, 32, 237, 1906, 16179, 142665, 1294115, 11998349, 113194205, 1083131419, 10486939473, 102548233212, 1011333385507, 10047289999536, 100458873883179, 1010138430187185, 10208244014494347, 103625607305637693, 1056166710786300973
Offset: 0
-
a(n, s=3, t=2, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A376159
G.f. satisfies A(x) = 1 / ((1-x)^3 - x*A(x)).
Original entry on oeis.org
1, 4, 17, 90, 539, 3451, 23100, 159720, 1131905, 8178326, 60019533, 446166771, 3352530190, 25422458170, 194302002463, 1495223230621, 11575504625874, 90090318248607, 704480581789900, 5532228951823605, 43610427926723780, 344972119634359080, 2737451123900901555
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(2/((1-x)^3+sqrt((1-x)^6-4*x)))
-
a(n) = sum(k=0, n, binomial(n+5*k+2, n-k)*binomial(2*k, k)/(k+1));
A382919
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^3 )^2.
Original entry on oeis.org
1, 2, 13, 84, 580, 4216, 31824, 247168, 1962800, 15866016, 130122304, 1080101760, 9057113472, 76610188544, 652895283200, 5600752756224, 48323092761344, 419068973537792, 3650909105378304, 31937405800724480, 280419948474447872, 2470473454986891264
Offset: 0
-
a(n, r=2, s=3, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
Showing 1-7 of 7 results.