cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360100 a(n) = Sum_{k=0..n} binomial(n+2*k-1,n-k) * Catalan(k).

Original entry on oeis.org

1, 1, 5, 23, 111, 562, 2952, 15948, 88076, 495077, 2823293, 16295020, 95007654, 558765743, 3310999269, 19748462718, 118471172054, 714355994997, 4327148812557, 26319195869861, 160677354596769, 984236344800234, 6047526697800992, 37262944840704171
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Partial sums are A360102.
Cf. A000108.

Programs

  • Maple
    A360100 := proc(n)
        add(binomial(n+2*k-1,n-k)*A000108(k),k=0..n) ;
    end proc:
    seq(A360100(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    m = 24;
    A[_] = 0;
    Do[A[x_] = 1 + x A[x]^2/(1 - x)^3 + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k-1, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^3)))

Formula

G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 / (1-x)^3.
G.f.: c(x/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) ~ sqrt(-2 + (35 - 3*sqrt(129))^(1/3) + (35 + 3*sqrt(129))^(1/3)) * (((7 + (262 - 6*sqrt(129))^(1/3) + (2*(131 + 3*sqrt(129)))^(1/3))/3)^n / (sqrt(2*Pi) * n^(3/2))). - Vaclav Kotesovec, Feb 18 2023
D-finite with recurrence (n+1)*a(n) +(-8*n+5)*a(n-1) +(10*n-27)*a(n-2) +(-4*n+17)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Mar 12 2023

A258973 The number of plain lambda terms presented by de Bruijn indices, see Bendkowski et al., where zeros have no weight.

Original entry on oeis.org

1, 3, 10, 40, 181, 884, 4539, 24142, 131821, 734577, 4160626, 23881695, 138610418, 812104884, 4796598619, 28529555072, 170733683579, 1027293807083, 6211002743144, 37713907549066, 229894166951757, 1406310771154682, 8630254073158599, 53117142215866687, 327800429456036588
Offset: 0

Views

Author

Kellen Myers, Jun 15 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 3, 10, 40][n+1],
          ((8*n-3)*a(n-1)-(10*n-13)*a(n-2)
         +(4*n-11)*a(n-3)-(n-4)*a(n-4))/(n+1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 30 2015
    a := n -> add(hypergeom([(i+1)/2, i/2+1, i-n+1], [1, 2], -4), i=0..n-1):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, May 03 2018
  • Mathematica
    a[n_] := a[n] = If[n<4, {1, 3, 10, 40}[[n+1]], ((8*n-3)*a[n-1] - (10*n-13)*a[n-2] + (4*n-11)*a[n-3] - (n-4)*a[n-4])/(n+1)]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 22 2015, after Alois P. Heinz *)
  • Maxima
    a(n):=sum(sum((binomial(k+i-1,k-1)*binomial(2*k+i-2,k+i-1)*binomial(n-i-1,n-k-i))/k,k,1,n-i),i,0,n); /* Vladimir Kruchinin, May 03 2018 */
  • PARI
    lista(nn) = {z = y + O(y^nn); Vec(((1-z)^2 - sqrt((1-z)^4-4*z*(1-z))) / (2*z*(1-z)));} \\ Michel Marcus, Jun 30 2015
    

Formula

G.f. G(z) satisfies z*G(z)^2 - (1-z)*G(z) + 1/(1-z) = 0 (see Bendkowski link Appendix B, p. 23). - Michel Marcus, Jun 30 2015
a(n) ~ 3^(n+1/2) * sqrt(43/(2*((43*(3397 - 261*sqrt(129)))^(1/3) + (43*(3397 + 261*sqrt(129)))^(1/3) - 86)*Pi)) / (3 - (2*6^(2/3)) / (sqrt(129)-9)^(1/3) + (6*(sqrt(129)-9))^(1/3))^n / (2*n^(3/2)). - Vaclav Kotesovec, Jul 01 2015
a(n) = 1 + a(n-1) + Sum_{i=0..n-1} a(i)*a(n-1-i). - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} binomial(k+i-1,k-1)*binomial(2*k+i-2,k+i-1)*binomial(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n-1} hypergeom([(i+1)/2, i/2+1, i-n+1], [1, 2], -4). - Peter Luschny, May 03 2018
From Peter Bala, Sep 02 2024: (Start)
a(n) = Sum_{k = 0..n} 1/(k + 1) * binomial(2*k, k)*binomial(n+2*k+1, 3*k+1).
Partial sums of A360102. Cf. A086616.
a(n) = (n + 1)*hypergeom([1/2, -n, (n+2)/2, (n+3)/2], [2, 2/3, 4/3], -16/27).
P-recursive: (n + 1)*a(n) = (8*n - 3)*a(n-1) - (10*n - 13)*a(n-2) + (4*n - 11)*a(n-3) - (n - 4)*a(n-4) with a(0) = 1, a(1) = 3, a(2) = 10 and a(3) = 40.
G.f. A(x) = 1/(1 - x)^2 * c(x/(1-x)^3) = (1 - x - sqrt((1 - 7*x + 3*x^2 - x^3)/(1 - x)))/(2*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

More terms from Michel Marcus, Jun 30 2015

A360103 a(n) = Sum_{k=0..n} binomial(n+4*k,n-k) * Catalan(k).

Original entry on oeis.org

1, 2, 9, 49, 283, 1715, 10793, 69906, 463031, 3122264, 21363065, 147951489, 1035173405, 7306326465, 51959150713, 371950057003, 2678083379707, 19381867703946, 140915907625531, 1028760981192771, 7538511404971231, 55427326349613665, 408789584900354397
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Partial sums of A360101.

Programs

  • Maple
    A360103 := proc(n)
        add(binomial(n+4*k,n-k)*A000108(k),k=0..n) ;
    end proc:
    seq(A360103(n),n=0..40) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/((1-x)*(1+sqrt(1-4*x/(1-x)^5))))

Formula

G.f. A(x) satisfies A(x) = 1/(1-x) + x * A(x)^2 / (1-x)^4.
G.f.: (1/(1-x)) * c(x/(1-x)^5), where c(x) is the g.f. of A000108.
D-finite with recurrence (n+1)*a(n) +2*(-5*n+3)*a(n-1) +(19*n-47)*a(n-2) +20*(-n+4)*a(n-3) +5*(3*n-17)*a(n-4) +2*(-3*n+22)*a(n-5) +(n-9)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
Showing 1-3 of 3 results.