A360105 Numbers k such that sigma_2(k^2 + 1) == 0 (mod k).
1, 2, 5, 7, 13, 25, 34, 52, 89, 93, 100, 200, 233, 338, 610, 850, 915, 1028, 1352, 1508, 1918, 2105, 3918, 4181, 5540, 6396, 6728, 7250, 9282, 10100, 10132, 10946, 15507, 16609, 17125, 32708, 32776, 37107, 42568, 47770, 58218, 61230, 72125, 74948, 75025, 78608
Offset: 1
Keywords
Examples
7 is in the sequence because the divisors of 7^2+1 = 50 are {1, 2, 5, 10, 25, 50}, and 1^2 + 2^2 + 5^2 + 10^2 + 25^2 + 50^2 = 3255 = 7*465 == 0 (mod 7).
Links
- Robert Israel, Table of n, a(n) for n = 1..222
Programs
-
Maple
filter:= k -> NumberTheory:-SumOfDivisors(k^2+1,2) mod k = 0: select(filter, [$1..10^5]); # Robert Israel, Feb 19 2024
-
Mathematica
Select[Range[50000], Divisible[DivisorSigma[2, #^2+1], #]&]
-
PARI
isok(k) = sigma(k^2 + 1, 2) % k == 0; \\ Michel Marcus, Jan 26 2023
Comments