A360107 Numbers k such that sigma_2(Fibonacci(k)^2 + 1) == 0 (mod Fibonacci(k)).
1, 2, 3, 5, 7, 9, 11, 13, 15, 19, 21, 25, 27, 31, 41, 45, 49, 81, 85, 129, 133, 135, 139, 357, 361, 429, 431, 433, 435, 447, 451, 507, 511, 567, 569, 571, 573
Offset: 1
Examples
7 is in the sequence because the divisors of Fibonacci(7)^2 + 1 = 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170}, and 1^2 + 2^2 + 5^2 + 10^2 + 17^2 + 34^2 + 85^2 + 170^2 = 37700 = 13*2900 == 0 (mod 13).
Programs
-
Mathematica
Select[Range[140],Divisible[DivisorSigma[2,Fibonacci[#]^2+1],Fibonacci[#]]&]
-
PARI
isok(k) = my(f=fibonacci(k)); sigma(f^2 + 1, 2) % f == 0; \\ Michel Marcus, Jan 26 2023
Extensions
a(24)-a(37) from Daniel Suteu, Jan 27 2023