A360147 Primes in base 10 that are also prime when read in a smaller base that is one plus the largest digit in the prime in base 10.
2, 3, 5, 7, 11, 13, 23, 31, 37, 43, 61, 73, 101, 103, 107, 113, 131, 151, 223, 227, 233, 241, 251, 277, 307, 311, 331, 337, 373, 401, 461, 463, 467, 521, 547, 557, 577, 661, 673, 701, 827, 887, 1013, 1033, 1103, 1151, 1181, 1213, 1223, 1231, 1301, 1327, 1567
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A038617.
Programs
-
Maple
q:= n-> isprime(n) and (l-> (d-> d<9 and isprime(add(l[i]* (d+1)^(i-1), i=1..nops(l))))(max(l)))(convert(n, base, 10)): select(q, [$1..2000])[]; # Alois P. Heinz, Jan 27 2023
-
Mathematica
q[p_] := Module[{d = IntegerDigits[p], b}, b = Max[d] + 1; b <= 9 && PrimeQ[FromDigits[d, b]]]; Select[Prime[Range[250]], q] (* Amiram Eldar, Jan 27 2023 *)
-
PARI
isok(p)=if(isprime(p), my(v=digits(p), b=vecmax(v)+1); b<10 && isprime(fromdigits(v,b)), 0) \\ Andrew Howroyd, Jan 27 2023
-
Python
from sympy import isprime def ok(n): if not isprime(n): return False s = str(n) b = int(max(s)) + 1 return b != 10 and isprime(int(s, b)) print([k for k in range(1600) if ok(k)]) # Michael S. Branicky, Jan 27 2023
Extensions
More terms from Michael S. Branicky, Jan 27 2023