A360150 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k,n-3*k).
1, 2, 6, 21, 77, 288, 1090, 4159, 15964, 61557, 238221, 924597, 3597290, 14024341, 54770176, 214218966, 838959762, 3289471537, 12910910288, 50720828034, 199422778415, 784672001097, 3089564308849, 12172411084432, 47984843655991, 189260578353602
Offset: 0
Keywords
Programs
-
Maple
A360150 := proc(n) add(binomial(2*n-k,n-3*k),k=0..n/3) ; end proc: seq(A360150(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
Mathematica
a[n_] := Sum[Binomial[2*n - k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
PARI
a(n) = sum(k=0, n\3, binomial(2*n-k, n-3*k));
-
PARI
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^5)))
Formula
G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^5) ), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+1) / sqrt(Pi*n). - Vaclav Kotesovec, Jan 28 2023
D-finite with recurrence n*a(n) +2*(-7*n+6)*a(n-1) +2*(36*n-61)*a(n-2) +4*(-41*n+103)*a(n-3) +(161*n-530)*a(n-4) +(-71*n+278)*a(n-5) +6*(2*n-9)*a(n-6)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^(n-1)). - Seiichi Manyama, Apr 09 2024