A105872
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k, n).
Original entry on oeis.org
1, 2, 6, 21, 75, 273, 1009, 3770, 14202, 53846, 205216, 785460, 3017106, 11624580, 44905518, 173863965, 674506059, 2621371005, 10203609597, 39773263035, 155231706951, 606554343495, 2372544034143, 9289131196485, 36401388236461
Offset: 0
-
Table[Sum[Binomial[2n-3k,n],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Jan 13 2015 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 28 2023
Erroneous title changed by
Paul Barry, Apr 14 2010
A360152
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 73, 262, 960, 3562, 13347, 50393, 191406, 730555, 2799622, 10765092, 41513751, 160490906, 621805286, 2413738744, 9385635299, 36550685683, 142534105563, 556514122937, 2175296066129, 8511430278018, 33334299581686, 130662787246407
Offset: 0
-
A360152 := proc(n)
add(binomial(2*n-5*k,n-3*k),k=0..n/3) ;
end proc:
seq(A360152(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - 5*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-5*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-2*x^3/(1+sqrt(1-4*x)))))
A360153
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-6*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 72, 258, 945, 3504, 13128, 49565, 188260, 718560, 2753721, 10588860, 40835160, 157871241, 611669250, 2374441380, 9233006541, 35956933050, 140220970200, 547490880981, 2140055896770, 8373651697800, 32795094564081, 128550662334522
Offset: 0
-
A360153 := proc(n)
add(binomial(2*n-6*k,n-3*k),k=0..n/3) ;
end proc:
seq(A360153(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - 6*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-6*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3)))
A360151
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 74, 267, 981, 3648, 13690, 51744, 196699, 751237, 2880345, 11080081, 42743148, 165291569, 640563158, 2487083484, 9672626600, 37674470433, 146937686295, 573781535775, 2243050091905, 8777451670102, 34379401083017, 134770951530840
Offset: 0
-
A360151 := proc(n)
add(binomial(2*n-4*k,n-3*k),k=0..n/3) ;
end proc:
seq(A360151(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - 4*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-4*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^2)))
A360168
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
Offset: 0
-
A360168 := proc(n)
add(binomial(2*n,n-3*k),k=0..n/3) ;
end proc:
seq(A360168(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))
A371871
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-2,n-3*k).
Original entry on oeis.org
1, 0, 1, 5, 18, 66, 246, 924, 3493, 13277, 50697, 194327, 747319, 2882061, 11142027, 43167573, 167561586, 651513594, 2537041938, 9892847952, 38623197264, 150959213886, 590626854072, 2312979822738, 9065733950526, 35561306875380, 139595183125750
Offset: 0
-
A371871 := proc(n)
1/(1-x^3)/(1-x)^(n-1) ;
coeftayl(%,x=0,n) ;
end proc:
seq(A371871(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k-2, n-3*k));
A371872
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-2*k-1,n-3*k).
Original entry on oeis.org
1, 1, 3, 11, 40, 147, 547, 2055, 7777, 29602, 113204, 434591, 1673821, 6464539, 25026534, 97087873, 377329971, 1468856383, 5726159811, 22351657810, 87350137071, 341726039806, 1338173763288, 5244830032639, 20573285744475, 80761011408961, 317249771957040
Offset: 0
-
A371872 := proc(n)
add(binomial(2*n-2*k-1,n-3*k),k=0..floor(n/3)) ;
end proc:
seq(A371872(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
-
a(n) = sum(k=0, n\3, binomial(2*n-2*k-1, n-3*k));
A371873
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+1,n-3*k).
Original entry on oeis.org
1, 3, 10, 36, 135, 517, 2003, 7815, 30634, 120480, 475002, 1876294, 7422676, 29400192, 116567356, 462561572, 1836843591, 7298613997, 29016050831, 115408159467, 459209330821, 1827849895817, 7277945888781, 28986847296997, 115479393316211, 460159673245743
Offset: 0
A360149
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k,n-2*k).
Original entry on oeis.org
1, 2, 7, 27, 107, 429, 1731, 7012, 28478, 115864, 471991, 1924483, 7852083, 32053208, 130893949, 534673600, 2184482707, 8926392419, 36479840422, 149095843951, 609400587426, 2490900041118, 10181669553847, 41618414303969, 170118507902985, 695366323719302
Offset: 0
-
A360149 := proc(n)
add(binomial(2*n+k,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A360149(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
-
a[n_] := Sum[Binomial[2*n + k, n - 2*k], {k, 0, Floor[n/2]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\2, binomial(2*n+k, n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^2*(2/(1+sqrt(1-4*x)))^5)))
A371854
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+2,n-3*k).
Original entry on oeis.org
1, 4, 15, 57, 219, 847, 3290, 12819, 50066, 195909, 767790, 3013002, 11837043, 46548919, 183209125, 721628692, 2844297119, 11217639757, 44265835891, 174765349896, 690308413773, 2727823240762, 10783518961394, 42644560775835, 168699835910561, 667580653569309
Offset: 0
Showing 1-10 of 10 results.