A105872
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k, n).
Original entry on oeis.org
1, 2, 6, 21, 75, 273, 1009, 3770, 14202, 53846, 205216, 785460, 3017106, 11624580, 44905518, 173863965, 674506059, 2621371005, 10203609597, 39773263035, 155231706951, 606554343495, 2372544034143, 9289131196485, 36401388236461
Offset: 0
-
Table[Sum[Binomial[2n-3k,n],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Jan 13 2015 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 28 2023
Erroneous title changed by
Paul Barry, Apr 14 2010
A360150
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 77, 288, 1090, 4159, 15964, 61557, 238221, 924597, 3597290, 14024341, 54770176, 214218966, 838959762, 3289471537, 12910910288, 50720828034, 199422778415, 784672001097, 3089564308849, 12172411084432, 47984843655991, 189260578353602
Offset: 0
-
A360150 := proc(n)
add(binomial(2*n-k,n-3*k),k=0..n/3) ;
end proc:
seq(A360150(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^5)))
A360152
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 73, 262, 960, 3562, 13347, 50393, 191406, 730555, 2799622, 10765092, 41513751, 160490906, 621805286, 2413738744, 9385635299, 36550685683, 142534105563, 556514122937, 2175296066129, 8511430278018, 33334299581686, 130662787246407
Offset: 0
-
A360152 := proc(n)
add(binomial(2*n-5*k,n-3*k),k=0..n/3) ;
end proc:
seq(A360152(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - 5*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-5*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-2*x^3/(1+sqrt(1-4*x)))))
A360151
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 74, 267, 981, 3648, 13690, 51744, 196699, 751237, 2880345, 11080081, 42743148, 165291569, 640563158, 2487083484, 9672626600, 37674470433, 146937686295, 573781535775, 2243050091905, 8777451670102, 34379401083017, 134770951530840
Offset: 0
-
A360151 := proc(n)
add(binomial(2*n-4*k,n-3*k),k=0..n/3) ;
end proc:
seq(A360151(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - 4*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-4*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^2)))
A360186
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-6*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 19, 68, 246, 905, 3364, 12624, 47715, 181392, 692808, 2656441, 10219208, 39423792, 152461079, 590861182, 2294182428, 8922674221, 34754402618, 135552346392, 529335200219, 2069344561102, 8097878381208, 31718268482881, 124341261876650
Offset: 0
-
A360186 := proc(n)
add((-1)^k*binomial(2*n-6*k,n-3*k),k=0..n/3) ;
end proc:
seq(A360186(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
Table[Sum[(-1)^k Binomial[2n-6k,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Mar 05 2023 *)
-
a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-6*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^3)))
A360168
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
Offset: 0
-
A360168 := proc(n)
add(binomial(2*n,n-3*k),k=0..n/3) ;
end proc:
seq(A360168(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))
Showing 1-6 of 6 results.