cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A307354 a(n) = Sum_{0<=i<=j<=n} (-1)^(i+j) * (i+j)!/(i!*j!).

Original entry on oeis.org

1, 2, 6, 19, 65, 231, 841, 3110, 11628, 43834, 166298, 634140, 2428336, 9331688, 35967462, 138987715, 538287881, 2088842463, 8119916647, 31613327405, 123251518641, 481125828853, 1880262896537, 7355767408395, 28803717914791, 112887697489907, 442784607413427
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Partial sums of A026641. - Seiichi Manyama, Jan 30 2023

Programs

  • Mathematica
    Table[Sum[Sum[(-1)^(i + j)*(i + j)!/(i!*j!), {i, 0, j}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=i, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 29 2023
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^3*(2/(1+sqrt(1-4*x)))^3))) \\ Seiichi Manyama, Jan 29 2023

Formula

a(n) = (A006134(n) + A120305(n))/2.
From Vaclav Kotesovec, Apr 04 2019: (Start)
Recurrence: 2*n*a(n) = (9*n-4)*a(n-1) - (3*n-2)*a(n-2) - 2*(2*n-1)*a(n-3).
a(n) ~ 2^(2*n+3) / (9*sqrt(Pi*n)). (End)
From Seiichi Manyama, Jan 29 2023: (Start)
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k,n).
G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)^3) ), where c(x) is the g.f. of A000108. (End)
a(n) = [x^n] 1/((1+x^3) * (1-x)^(n+1)). - Seiichi Manyama, Apr 08 2024

A360185 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-4*k,n-2*k).

Original entry on oeis.org

1, 2, 5, 18, 65, 234, 859, 3198, 12011, 45422, 172745, 660010, 2531411, 9740590, 37585189, 145376930, 563495201, 2188229290, 8511640099, 33157034510, 129334888721, 505100839930, 1974764074999, 7728329887670, 30272839608101, 118682276550082, 465645693340003
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2023

Keywords

Crossrefs

Programs

  • Maple
    A360185 := proc(n)
        add((-1)^k*binomial(2*n-4*k,n-2*k),k=0..n/2) ;
    end proc:
    seq(A360185(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-4*k, n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^2)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 + x^2) ).
a(n) ~ 2^(2*n + 4) / (17*sqrt(Pi*n)). - Vaclav Kotesovec, Jan 29 2023
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) +n*a(n-2) +2*(-2*n+1)*a(n-3)=0. - R. J. Mathar, Mar 12 2023
a(n)+a(n-2) = A000984(n). - R. J. Mathar, Mar 12 2023

A360291 a(n) = Sum_{k=0..floor(n/3)} binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 72, 264, 984, 3714, 14148, 54284, 209482, 812196, 3161340, 12345658, 48348522, 189807336, 746740510, 2943359208, 11620961412, 45950375602, 181936110006, 721233025332, 2862271873966, 11370584735100, 45212101270728, 179926167512914
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1-2*k, k)*binomial(2*n-6*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)))

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-3)*a(n-3) - 2*(2*n-10)*a(n-4) - (n-6)*a(n-6).
a(n) = A383581(n) - A383581(n-3). - Seiichi Manyama, May 01 2025

A360212 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-5*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 19, 67, 242, 890, 3310, 12423, 46959, 178526, 681893, 2614698, 10059000, 38807021, 150080294, 581649776, 2258469988, 8783966719, 34214789901, 133450049457, 521134066663, 2037313708685, 7972641631438, 31228124666374, 122421230120657
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A360212 := proc(n)
        add((-1)^k*binomial(2*n-5*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360212(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-5*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^3/(1+sqrt(1-4*x)))))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)) ), where c(x) is the g.f. of A000108.
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(3*n-4)*a(n-2) +2*(-6*n+11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(n-4)*a(n-7) +2*(-2*n+9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023
Showing 1-4 of 4 results.