cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120305 a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * (i+j)!/(i!j!).

Original entry on oeis.org

1, 1, 3, 9, 31, 111, 407, 1513, 5679, 21471, 81643, 311895, 1196131, 4602235, 17757183, 68680169, 266200111, 1033703055, 4020716123, 15662273839, 61092127491, 238582873475, 932758045123, 3650336341239, 14298633670931
Offset: 0

Views

Author

Alexander Adamchuk, Jul 14 2006

Keywords

Comments

p divides a((p+1)/2) for prime p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, ... (A033200: primes congruent to {1, 3} mod 8; or, odd primes of the form x^2 + 2*y^2).
p divides a((p-3)/2) for prime p = 17, 41, 73, 89, 97, 113, 137, ... (A007519: primes of the form 8n+1).
Essentially the same as partial sums of A072547. - Seiichi Manyama, Jan 30 2023

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(-1)^(i+j)*(i+j)!/(i!j!),{i,0,n}],{j,0,n}],{n,0,50}]
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n, (-1)^(i+j) * (i+j)!/(i!*j!))); \\ Michel Marcus, Apr 02 2019
    
  • PARI
    a(n) = sum(i=0, 2*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^2, i)); \\ Seiichi Manyama, May 20 2019
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x)))) \\ Seiichi Manyama, Jan 30 2023

Formula

a(n) = Sum_{j=0..n} Sum_{i=0..n} (-1)^(i+j)*(i+j)!/(i!j!).
Recurrence: 2*n*(3*n-5)*a(n) = 3*(9*n^2 - 19*n + 8)*a(n-1) - 3*(n-1)*(3*n-4)*a(n-2) - 2*(2*n-3)*(3*n-2)*a(n-3). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 4^(n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 13 2013
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( (1 - x *c(x))/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023
From Seiichi Manyama, Apr 06 2024: (Start)
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k-1,n-3*k).
a(n) = [x^n] 1/((1+x^3) * (1-x)^n). (End)

A306409 a(n) = -Sum_{0<=i

Original entry on oeis.org

0, 1, 3, 10, 34, 120, 434, 1597, 5949, 22363, 84655, 322245, 1232205, 4729453, 18210279, 70307546, 272087770, 1055139408, 4099200524, 15951053566, 62159391150, 242542955378, 947504851414, 3705431067156, 14505084243860, 56831711106496, 222853334131080
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2019

Keywords

Examples

			n | a(n) | A307354 | A006134 | A120305
--+------+---------+---------+---------
0 |    0 |       1 |       1 |       1
1 |    1 |       2 |       3 |       1
2 |    3 |       6 |       9 |       3
3 |   10 |      19 |      29 |       9
4 |   34 |      65 |      99 |      31
5 |  120 |     231 |     351 |     111
		

Crossrefs

Partial sums of A014300. - Seiichi Manyama, Jan 30 2023

Programs

  • Mathematica
    Table[-Sum[Sum[(-1)^(i+j) * (i+j)!/(i!*j!), {i, 0, j-1}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 05 2019 *)
  • PARI
    a(n) = -sum(i=0, n, sum(j=i+1, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x))))) \\ Seiichi Manyama, Jan 30 2023

Formula

a(n) = A006134(n) - A307354(n).
a(n) = (A006134(n) - A120305(n))/2.
a(n) ~ 4^(n+1) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 05 2019
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( x *c(x)/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023

A360212 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-5*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 19, 67, 242, 890, 3310, 12423, 46959, 178526, 681893, 2614698, 10059000, 38807021, 150080294, 581649776, 2258469988, 8783966719, 34214789901, 133450049457, 521134066663, 2037313708685, 7972641631438, 31228124666374, 122421230120657
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A360212 := proc(n)
        add((-1)^k*binomial(2*n-5*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360212(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-5*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^3/(1+sqrt(1-4*x)))))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 + x^3 * c(x)) ), where c(x) is the g.f. of A000108.
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(3*n-4)*a(n-2) +2*(-6*n+11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(n-4)*a(n-7) +2*(-2*n+9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023

A307358 a(n) = Sum_{0<=i<=j<=k<=n} (-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!).

Original entry on oeis.org

1, -4, 72, -1345, 27886, -610558, 13861334, -322838475, 7663363513, -184598740512, 4498935186891, -110693299767349, 2745124008220296, -68532209858173364, 1720678086867077832, -43415209670536390089, 1100146390869600888470
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!), {i, 0, j}], {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    {a(n) = sum(i=0, n, sum(j=i, n, sum(k=j, n, (-1)^(i+j+k)*(i+j+k)!/(i!*j!*k!))))}

Formula

a(n) ~ (-1)^n * 3^(3*n + 13/2) / (1792*Pi*n). - Vaclav Kotesovec, Apr 04 2019
Showing 1-4 of 4 results.