cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360292 a(n) = Sum_{k=0..floor(n/4)} binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k).

Original entry on oeis.org

1, 2, 6, 20, 70, 254, 936, 3492, 13150, 49882, 190318, 729576, 2807816, 10841962, 41983588, 162973568, 633994982, 2471010742, 9646981054, 37718873700, 147676286078, 578883674722, 2271704404900, 8923807316892, 35087269756344, 138075819924306
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-1-3*k, k)*binomial(2*n-8*k, n-4*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^4)))

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^4)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-4)*a(n-4) - 2*(2*n-13)*a(n-5) - (n-8)*a(n-8).
a(n) = A383582(n) - A383582(n-4). - Seiichi Manyama, May 01 2025

A360309 a(n) = Sum_{k=0..floor(n/3)} binomial(n-1-2*k,n-3*k) * binomial(2*k,k).

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 8, 14, 20, 46, 92, 158, 314, 630, 1176, 2274, 4498, 8674, 16804, 32990, 64358, 125414, 245832, 481674, 942912, 1850122, 3633220, 7133730, 14020694, 27578954, 54261912, 106819006, 210411028, 414619486, 817344908, 1611978734, 3180333830, 6276743430
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1-2*k, n-3*k)*binomial(2*k, k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x^3/(1-x)))

Formula

G.f.: 1 / sqrt(1-4*x^3/(1-x)).
n*a(n) = 2*(n-1)*a(n-1) - (n-2)*a(n-2) + 2*(2*n-3)*a(n-3) - 2*(2*n-6)*a(n-4).
a(n) ~ 2^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 18 2023

A360290 a(n) = Sum_{k=0..floor(n/2)} binomial(n-1-k,k) * binomial(2*n-4*k,n-2*k).

Original entry on oeis.org

1, 2, 6, 22, 82, 314, 1222, 4814, 19138, 76626, 308550, 1248230, 5069266, 20654602, 84392838, 345659166, 1418769154, 5834283298, 24031706246, 99134911542, 409495076050, 1693539077210, 7011618614342, 29058701620974, 120540377731266, 500443750830962
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1-k, k) * Binomial(2*n-4*k, n-2*k): k in [0..Floor(n div 2)]]: n in [0..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[Binomial[n-1-k,k]* Binomial[2*n-4*k, n-2*k],{k,0,Floor[n/2]}],{n,0,35}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-1-k, k)*binomial(2*n-4*k, n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^2)))
    

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^2)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-2)*a(n-2) - 2*(2*n-7)*a(n-3) - (n-4)*a(n-4).
a(n) ~ phi^(3*n) / (5^(1/4) * sqrt(Pi*n/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Feb 02 2023
a(n) = A383573(n) - A383573(n-2). - Seiichi Manyama, May 01 2025

A383581 a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-3*k),n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 74, 270, 1005, 3788, 14418, 55289, 213270, 826614, 3216629, 12558928, 49175136, 193023965, 759299438, 2992534344, 11813985377, 46709675040, 184928644350, 733047010709, 2908981549006, 11555513379450, 45945148281437, 182835149061920, 728149606630164
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-2*k,k) * Binomial(2*(n-3*k),n-3*k): k in [0..n div 3]]: n in [0..25]]; // Vincenzo Librandi, May 02 2025
  • Mathematica
    Table[Sum[Binomial[n-2*k,k]* Binomial[2*(n-3*k),n-3*k],{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*(n-3*k), n-3*k));
    

Formula

G.f.: 1/sqrt((1 - x^3) * (1 - x^3 - 4*x)).
Showing 1-4 of 4 results.