cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360291 a(n) = Sum_{k=0..floor(n/3)} binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 72, 264, 984, 3714, 14148, 54284, 209482, 812196, 3161340, 12345658, 48348522, 189807336, 746740510, 2943359208, 11620961412, 45950375602, 181936110006, 721233025332, 2862271873966, 11370584735100, 45212101270728, 179926167512914
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1-2*k, k)*binomial(2*n-6*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)))

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-3)*a(n-3) - 2*(2*n-10)*a(n-4) - (n-6)*a(n-6).
a(n) = A383581(n) - A383581(n-3). - Seiichi Manyama, May 01 2025

A383573 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(2*(n-2*k),n-2*k).

Original entry on oeis.org

1, 2, 7, 24, 89, 338, 1311, 5152, 20449, 81778, 328999, 1330008, 5398265, 21984610, 89791103, 367643776, 1508560257, 6201927074, 25540266503, 105336838616, 435035342553, 1798875915826, 7446653956895, 30857577536800, 127987031688161, 531301328367762, 2207281722474919
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-k, k) * Binomial(2*(n-2*k), n-2*k): k in [0..Floor(n div 2)]]: n in [0..35]]; // Vincenzo Librandi, May 03 2025
  • Mathematica
    Table[Sum[Binomial[n-k,k]* Binomial[2*(n-2*k),n-2*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 03 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(2*(n-2*k), n-2*k));
    

Formula

G.f.: 1/sqrt((1 - x^2) * (1 - x^2 - 4*x)).
a(n) ~ phi^(3*n + 3) / (2^(3/2) * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 01 2025

A383582 a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-4*k),n-4*k).

Original entry on oeis.org

1, 2, 6, 20, 71, 256, 942, 3512, 13221, 50138, 191260, 733088, 2821037, 10892100, 42174848, 163706656, 636816019, 2481902842, 9689155902, 37882580356, 148313102097, 581365577564, 2281393560802, 8961689897248, 35235582858441, 138657185501870, 546064549476476
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-3*k,k) * Binomial(2*(n-4*k),n-4*k): k in [0..n div 4]]: n in [0..45]]; // Vincenzo Librandi, May 02 2025
  • Mathematica
    Table[Sum[Binomial[n-3*k,k]* Binomial[2*(n-4*k),n-4*k],{k,0,Floor[n/4]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-4*k), n-4*k));
    

Formula

G.f.: 1/sqrt((1 - x^4) * (1 - x^4 - 4*x)).
a(n) ~ (2 + sqrt(2) + sqrt(10 + 8*sqrt(2)))^n / (sqrt((sqrt(5 + 32*sqrt(2)) - 7)*Pi*n) * 2^(n + 7/4)). - Vaclav Kotesovec, May 01 2025
Showing 1-3 of 3 results.