cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360153 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-6*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 72, 258, 945, 3504, 13128, 49565, 188260, 718560, 2753721, 10588860, 40835160, 157871241, 611669250, 2374441380, 9233006541, 35956933050, 140220970200, 547490880981, 2140055896770, 8373651697800, 32795094564081, 128550662334522
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360153 := proc(n)
        add(binomial(2*n-6*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360153(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n - 6*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-6*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3) ).
a(n) ~ 2^(2*n + 6) / (63 * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
a(n)-a(n-3) = A000984(n). - R. J. Mathar, Mar 12 2023
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) -n*a(n-3) +2*(2*n-1)*a(n-4)=0. - R. J. Mathar, Mar 12 2023