A360162 a(n) is the sum of the square roots of the unitary divisors of n that are squares.
1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1)); }
Formula
a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} sqrt(d).
Multiplicative with a(p^e) = p^(e/2) + 1 if e is even, and 1 if e is odd.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)/zeta(3*s-1).
Sum_{k=1..n} a(k) ~ (3*n/Pi^2)*(log(n) + 3*gamma - 1 - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).
Comments