A069138 Triangle formed by multiplying Stirling numbers of 2nd kind S2(n,m) (A008277) by m+1.
2, 2, 3, 2, 9, 4, 2, 21, 24, 5, 2, 45, 100, 50, 6, 2, 93, 360, 325, 90, 7, 2, 189, 1204, 1750, 840, 147, 8, 2, 381, 3864, 8505, 6300, 1862, 224, 9, 2, 765, 12100, 38850, 41706, 18522, 3696, 324, 10, 2, 1533, 37320, 170525, 255150, 159789, 47040, 6750, 450, 11
Offset: 1
Examples
Triangle begins: 2; 2, 3; 2, 9, 4; 2, 21, 24, 5; 2, 45, 100, 50, 6; ...
References
- Suggested by R. K. Guy, Mar 11 2002.
Links
- Stephen Pollard, C.S. Peirce and the Bell Numbers, Mathematics Magazine, Vol. 76 (2003), pp. 99-106.
Crossrefs
Programs
-
PARI
T(n, m) = stirling(n, m, 2)*(m+1); tabl(nn) = for(n=1, nn, for (k=1, n, print1(T(n, m), ", ")); print); \\ Michel Marcus, Sep 21 2017
Formula
T(n, m) = (m+1)*S2(n, m).
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 01 2002
Comments