A063655 Smallest semiperimeter of integral rectangle with area n.
2, 3, 4, 4, 6, 5, 8, 6, 6, 7, 12, 7, 14, 9, 8, 8, 18, 9, 20, 9, 10, 13, 24, 10, 10, 15, 12, 11, 30, 11, 32, 12, 14, 19, 12, 12, 38, 21, 16, 13, 42, 13, 44, 15, 14, 25, 48, 14, 14, 15, 20, 17, 54, 15, 16, 15, 22, 31, 60, 16, 62, 33, 16, 16, 18, 17, 68, 21, 26
Offset: 1
Keywords
Examples
Since 15 = 1*15 = 3*5 and the 3*5 rectangle gives smallest semiperimeter 8, we have a(15)=8.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Roy Meshulam, An uncertainty inequality for finite abelian groups, arXiv:math/0312407 [math.CO], 2003.
- Roy Meshulam, An uncertainty inequality for finite abelian groups, European Journal of Combinatorics, 27 (2006) 63-67.
Crossrefs
Programs
-
Maple
A063655 := proc(n) local i,j; for i from floor(sqrt(n)) to 1 by -1 do j := floor(n/i) ; if i*j = n then return i+j; end if; end do: end proc: seq(A063655(n), n=1..80); # Winston C. Yang, Feb 03 2002
-
Mathematica
Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 2*Sqrt[n], d[[len/2]] + d[[1 + len/2]]], {n, 100}] (* T. D. Noe, Mar 06 2012 *) Table[2*Median[Divisors[n]],{n,100}] (* Gus Wiseman, Mar 18 2023 *)
-
PARI
A063655(n) = { my(c=1); fordiv(n,d,if((d*d)>=n,if((d*d)==n,return(2*d),return(c+d))); c=d); (0); }; \\ Antti Karttunen, Oct 20 2017
-
Python
from sympy import divisors def A063655(n): d = divisors(n) l = len(d) return d[(l-1)//2] + d[l//2] # Chai Wah Wu, Jun 14 2019
Formula
a(n) = Min_{d|n} (n/d + d). - Ridouane Oudra, Mar 17 2024
Extensions
Corrected and extended by Larry Reeves (larryr(AT)acm.org) and Dean Hickerson, Jul 26 2001
Comments