A360467 a(n) = Fibonacci(4*n+2) + 3*Fibonacci(2*n+1)^2.
4, 20, 130, 884, 6052, 41474, 284260, 1948340, 13354114, 91530452, 627359044, 4299982850, 29472520900, 202007663444, 1384581123202, 9490060198964, 65045840269540, 445830821687810, 3055769911545124, 20944558559128052, 143556140002351234, 983948421457330580
Offset: 0
Keywords
Examples
a(2) = F(4*2+2) + 3*F(2*2 +1)^2 = F(10) + 3*F(5)^2 = 55 + 3*5^2 = 130. a(4) = F(4*4+2) + 3*F(2*4 +1)^2 = F(18) + 3*F(9)^2 = 2584+ 3*34^2 = 6052. G.f. = 4 + 20*x + 130*x^2 + 884*x^3 + 6052*x^4 + ... - _Michael Somos_, Mar 02 2023
Links
- Nicolay Avilov, Problem 2450. The sixth parallelogram (in Russian),
- Nicolay Avilov, Problem 2447. Four triangles in a parallelogram (in Russian),
- Nicolay Avilov, Problem 2442. Herringbone in a parallelogram (in Russian).
- Alexander M. Domashenko, Illustration of square divided into four triangles.
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Programs
-
Maple
a := proc(n) option remember; if n < 3 then return [4, 20, 130][n + 1] fi; a(n-3) - 8 * (a(n-2) - a(n-1)) end: seq(a(n), n = 0..22); # Peter Luschny, Feb 17 2023
-
Mathematica
LinearRecurrence[{8, -8, 1}, {4, 20, 130}, 22] (* Amiram Eldar, Feb 17 2023 *) a[ n_] := 2 * Fibonacci[2*n+1] * Fibonacci[2*n+3]; (* Michael Somos, Mar 02 2023 *)
-
PARI
Vec(2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)) + O(x^25)) \\ Andrew Howroyd, Feb 16 2023
-
SageMath
print([2*(lucas_number2(n+1, 7, 1) + 3) // 5 for n in range(23)]) # Peter Luschny, Feb 17 2023
Formula
a(n) = Fibonacci(2*n+1)*(Fibonacci(2*n) + Fibonacci(2*n+2) + 3*Fibonacci(2*n+1)).
a(n) = 2*A064170(n+3).
G.f.: 2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)). - Andrew Howroyd, Feb 16 2023
a(n) = a(n-3) - 8 * (a(n-2) - a(n-1)) for n >= 3. - Peter Luschny, Feb 17 2023
a(n) = a(-2-n) = 2*F(2*n+1) * F(2*n+3) = A295683(4*(n+1)) for all n in Z. - Michael Somos, Mar 02 2023
Comments