A360487 Convolution of A000009 and A000290.
0, 1, 5, 14, 31, 60, 106, 176, 279, 426, 631, 912, 1291, 1795, 2457, 3317, 4424, 5837, 7626, 9875, 12684, 16171, 20476, 25764, 32228, 40094, 49626, 61131, 74966, 91545, 111346, 134921, 162906, 196031, 235134, 281175, 335251, 398615, 472695, 559115, 659721, 776608
Offset: 0
Keywords
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= n-> add(b(n-j)*j^2, j=0..n): seq(a(n), n=0..42); # Alois P. Heinz, Feb 09 2023
-
Mathematica
Table[Sum[PartitionsQ[k]*(n-k)^2, {k, 0, n}], {n, 0, 60}] CoefficientList[Series[x*(1+x)*QPochhammer[-1, x] / (2*(1-x)^3), {x, 0, 60}], x]
Formula
a(n) = Sum_{k=0..n} A000009(k) * (n-k)^2.
G.f.: x*(1+x)/(1-x)^3 * Product_{k>=1} (1 + x^k).
a(n) ~ 4 * 3^(5/4) * n^(3/4) * exp(sqrt(n/3)*Pi) / Pi^3.